Bulk Metal® Foil Resistors
Design and Selector Guide
Table of Contents

- Introduction .. 3
- Bulk Metal® Foil Technology Product Life Cycle 4
- Ten Technical Reasons to Choose Foil Resistors for Your Circuit ... 5
- Post Manufacturing Operations (PMO) 15
- Selector Guides ... 16
 - Surface-Mount Resistors 16
 - Through-Hole Resistors 28
 - Power Current-Sensing Resistors 37
 - Voltage Dividers and Resistor Networks 46
 - Hermetically Sealed Resistors 54
 - Trimming Potentiometers 59
 - Hybrid Chips and Custom Designed Hermetically Sealed Networks (PRND) 62
 - Avionics, Military, and Space (AMS) 67
- VFR Resistors In Action 73
- Rapid Prototype Sample Services 86
- Contacts ... 87
About Vishay Foil Resistors

First introduced in 1962, the Bulk Metal® Foil technology of Vishay Precision Group’s (VPG) Vishay Foil Resistors (VFR) product line still out-performs all other resistor technologies available for applications that require precision, stability, and reliability. Ultra-precision Bulk Metal Foil resistors provide extremely low temperature coefficient of resistance (TCR) and exceptional long-term stability through temperature extremes. VFR products include discrete resistors and resistor networks in surface-mount and through-hole (leaded) configurations, precision trimming potentiometers, and discrete chips for use in hybrid circuits, with customized chip resistor networks and arrays available. We continue to develop, manufacture, and market new types of Bulk Metal Foil resistors, including military-established-reliability components (EEE-INST-002, DLA, CECC, ESA, ER, QPL, etc).

This Design and Selector Guide brings together the technical data you need to choose the best Bulk Metal Foil resistor for your application—including technical aspects of foil technology, selector guides, and applications sections. Selector guides are divided into sections providing the resistance range, tolerance, TCR, rated power, and load-life stability of Bulk Metal Foil products in eight categories:

- Surface-mount
- Through-hole
- Power current-sensing
- Voltage dividers and resistor networks
- Hermetically-sealed
- Trimming potentiometers
- Hybrid chips and custom designed hermetically-sealed networks (PRND)
- Avionics, military, and space (AMS)
Recent and Forthcoming Product Developments

- Implementation of Z1 Foil Technology in all products
- Introduction of new products for high-temperature applications (up to 240°C)
- Smaller SMD case sizes (including 0402 and 0603)
- Current sense with higher power

Color Key for Certificates

- DLA DWG Available
- EEE INST 002 test program
- Established Reliability (ER)
- QPL

Foil Technology Generations —
1962: Classic Foil I
1982: Classic Foil II
2000: Z Foil
2010: Z1 Foil Technology

No Obsolescence in Foil Technology

No Obsolescence in Foil Technology
Ten Technical Reasons to Choose VFR Resistors for Your Circuit

Over fifty years after its invention by physicist Dr. Felix Zandman in 1962, Bulk Metal® Foil technology still outperforms all other resistor technologies available today for applications that require precision, stability, and reliability. VFR Bulk Metal Foil products are offered in a variety of resistor configurations and package types to meet the needs of a wide range of applications.

Introduced in 2000, Bulk Metal Foil products built on the revolutionary Z Foil Technology deliver an absolute temperature coefficient of resistance (TCR) of ±0.2 ppm/°C (–55°C to +125°C, +25°C ref.), one order of magnitude better than previous foil technologies. The lower the absolute TCR, the better a resistor can maintain its precise value despite ambient temperature variations and self-heating when power is applied.

A specific foil alloy with known and controllable properties (Ni/Cr with additives) is cemented to a special ceramic substrate, resulting in a thermo-mechanical balance of forces. A resistive pattern is then photo-etched in the foil. This process uniquely combines the important characteristics of low TCR, long-term stability, non-inductance, ESD insensitivity, low capacitance, fast thermal stabilization, and low noise in one single resistor technology.

These capabilities bring high stability and reliability to system performance without any compromise between accuracy, stability, and speed. To acquire a precision resistance value, the Bulk Metal Foil chip is trimmed by selectively removing built-in “shorting bars.” To increase the resistance in known increments, selected areas are cut, producing progressively smaller increases in resistance.

In the planar foil, the parallel patterned element design reduces inductance; maximum total inductance of the resistor is 0.08 μH. Capacitance is 0.5 pF maximum. A 1 kΩ resistor has a settling time of less than 1 ns up to 100 MHz. Rise time depends on resistance value, but higher and lower values are only slightly slower than mid-range values. Absence of ringing is especially important in high-speed switching as in, for example, signal conversion. The DC resistance of a 1 kΩ Bulk Metal Foil resistor compared with its AC resistance at 100 MHz can be expressed as follows: AC resistance/DC resistance = 1.001.

Foil techniques produce a combination of highly desirable and previously unattainable resistor specifications. By taking advantage of the overall stability and reliability of VFR resistors, designers can significantly reduce circuit errors and greatly improve overall circuit performance. Bulk Metal technology enables customer-oriented products designed to satisfy challenging technical requirements. Customers are invited to contact our Application Engineering Department with non-standard technical requirements and special applications (email: foil@vpgsensors.com).

Features

- Temperature coefficient of resistance (TCR) for Z Foil Technology: ±0.2 ppm/°C typical (–55°C to +125°C, +25°C ref.)
- Power coefficient of resistance for Z Foil technology (Power PCR) “ΔR due to self heating”: ±5 ppm at rated power
- Load-life stability: to ±0.005% (50 ppm) at +70°C, 10,000 hours at rated power
- Resistance tolerance: ±0.001% (10 ppm)
- Resistance range: 0.5 mΩ to 1.8 MΩ
- Electrostatic discharge (ESD): at least to 25 kV
- Non-inductive, non-capacitive design
- Rise time: 1 ns without ringing
- Thermal stabilization time <1 sec (nominal value achieved within 10 ppm of steady-state value)
- Current noise: 0.010 μV rms/volt of applied voltage (≤–40 dB)
- Thermal EMF: 0.05 μV/°C
- Voltage coefficient: <0.1 ppm/V
- Trimming operations increase resistance in precise steps but from remote locations so that the etched grid in the active area remains reliable and noise-free (see Figures 4 and 5)
- Lead (Pb) free, tin/lead and gold terminations are available

Range of Foil Resistor Products

- Surface-mount chips, molded resistors and networks
- Power resistors and current sensors
- Military established reliability (QPL, DLA, EEE-INST-002, ESA, CECC)
- Leaded (through-hole)
- Hermetically sealed
- Trimming potentiometers
- Voltage dividers and networks
- Hybrid chips (wire-bondable chips)
- High-temperature resistors (>220°C)
- Resistors for audio
Ten Technical Reasons to Choose VFR Resistors for Your Circuit

Reason 1: Temperature Coefficient of Resistance (TCR)

“Why are extremely low absolute TCR resistors required?” This is a good question to ask when evaluating the performance and cost of a system, and the answers are as numerous as the systems in which the resistors are installed. The following pages discuss ten different individual technical characteristics of Bulk Metal Foil technology that are important to precision analog circuits. While each characteristic is discussed independently for clarity, many circuits require some specific combination of these characteristics and, often, all characteristics are required in the same resistive devices.

As an example, one might examine the requirements of an operational amplifier. In operational amplifiers the gain is set by the ratio of the feedback resistor to the input resistor. With differential amplifiers the common-mode rejection ratio (CMRR) is based on the ratios of a four-resistor set. In both cases, any change in the ratios of these resistors directly affects the function of the circuit. The ratios might change due to different absolute temperature coefficients experiencing differential heating (either internal or external), differential tracking through changes in ambient temperature, differential time-response to step inputs or high-frequency signals, differential Joule heating due to different power levels, different changes in resistance over design life, etc.

So it can easily be seen that it is common for many circuits to depend on many application-related stability characteristics—all at the same time in the same devices. Bulk Metal Foil technology is the ONLY resistor technology that provides the tightest envelope of ALL of these characteristics in the same resistor, with low noise also inherent.

Initial TCR

The solution to stability problems is resistors with extremely low absolute TCR to keep temperature-induced changes to a minimum. Two predictable and opposing physical phenomena within the composite structure of the resistive alloy and its substrate are the keys to the low absolute TCR capability of a Bulk Metal Foil resistor:

- Resistivity of the resistive alloy changes directly with temperature in free air (resistance of the foil increases when temperature increases)
- The coefficient of thermal expansion (CTE) of the alloy and the substrate to which the foil alloy is cemented are different, resulting in a compressive stress on the resistive alloy when temperature increases (resistance of the foil decreases due to compression caused by the temperature increases)

The two opposing effects occur simultaneously, resulting in an unusually low, predictable, repeatable, and controllable TCR. Due to the design of the Bulk Metal Foil resistor, this TCR characteristic is accomplished automatically, without selection, and regardless of the resistance value or the date of manufacture—even if years apart.

Improved TCR In Bulk Metal Z Foil Resistors to ±0.2 ppm/°C

Foil resistor technology has continued to progress over the years, with significant improvements in TCR. Figure 1 shows the typical TCR characteristics of the various foil alloys used to produce Bulk Metal Foil resistors. The original C Foil alloy exhibited a negative parabolic response to temperature with a positive chord slope on the cold side and a negative chord slope on the hot side. Next was the K Foil alloy, which produced an opposite parabolic response with temperature with a negative chord slope on the cold side and a positive chord slope on the hot side. In addition, it provided a TCR approximately one half that of the C Foil alloy.

The latest breakthroughs are the Z and Z1 Foil alloys, which have a similar parabolic response to the K Foil alloy but produce TCR characteristics an order of magnitude better than C Foil and five times better than the K Foil. Using this technology, extremely low TCR resistors have been developed that provide virtually zero response to temperature. These technological developments have resulted in a major improvement in TCR characteristics compared to what was available before, and what is available in any other resistor technology.

Typical TCR

Foil typical TCR is defined as the chord slopes of the relative change of resistance vs. temperature (RT) curve, and is expressed in ppm/°C (parts per million per degree centigrade). Slopes are defined from 0°C to +25°C and +25°C to +60°C (instrument range), and from −55°C to +25°C and +25°C to +125°C (military range). These specified temperatures and the defined typical TCR chord slopes apply to all resistance values, including low-value resistors. Note, however, that without four terminals and Kelvin connections in low values, an allowance for lead resistance and associated TCR may have to be made. All resistance and TCR measurements of leaded styles are made by the factory at a gage point one-half in from the standoffs. Contact the Application Engineering Department for the expected TCR increase for low-value resistors.
TCR Tracking

“Tracking” is the stability of the ratio(s) of two or more resistors. When more than one resistor shares the same substrate (see Figure 2), the TCR tracking will be much better than the TCR provided by two discrete resistors. Resistors with different technologies increase or decrease in value when temperatures change, even from the same batch. Resistance ratio tracking is influenced by heat that comes from outside (such as a rising ambient temperature or hot adjacent objects) and inside (as a result of self-heating due to power dissipation) the device. Resistors may be selected for good TCR tracking when they are all at the same temperature. However, changes due to differential internal temperatures (e.g., differential power dissipation) or different local temperatures (e.g., differential heating from neighboring components) are superimposed upon the tracking and cause additional temperature-related errors. Therefore, low absolute TCR is important for good TCR tracking in precision applications.

The best analog design would be to use a fundamentally low-absolute-TCR resistor, since it would minimize the effect of ambient temperature and self-heating. This is impossible to accomplish with resistors with high TCR >5 ppm/°C, even with good initial TCR tracking of less than 2 ppm/°C.

Reason 2: Power Coefficient of Resistance (PCR)

The TCR of a resistor for a given temperature range is established by measuring the resistance at two different ambient temperatures: at room temperature and in a cooling chamber or oven. The ratio of relative resistance change and temperature difference gives the slope of $\Delta R/R = f (T)$ curve. This slope is usually expressed in ppm/°C. In these conditions, a uniform temperature is achieved in the measured resistance. In practice, however, the temperature rise of the resistor is also partially due to self-heating as a result of the power it is dissipating. As stipulated by the Joule effect, when current flows through a resistance, there will be an associated generation of heat. Therefore, the TCR alone does not provide the actual resistance change for a precision resistor.

Hence, another metric is introduced to incorporate this inherent characteristic—the power coefficient of resistance (PCR). PCR is expressed in parts per million per Watt (ppm/W) or in ppm at rated power. In the case of Z Foil Bulk Metal® resistors, the PCR is 5 ppm typical at rated power or 4 ppm/W typical for power resistors. For example, for a foil power resistor with a TCR of 0.2 ppm/°C and PCR of 4 ppm/W, a temperature change of 50°C (from +25°C to +75°C) at rated power of 0.5 W will produce a $\Delta R/R$ of 50 x 0.2 + 0.5 x 4 = 12 ppm absolute change.

Reason 3: Thermal Stabilization

When power is applied to the resistor, self-heating occurs. Foil’s low TCR and PCR capabilities help to minimize this effect. But to achieve high-precision results, a rapid response to any changes in the environment or other stimuli is necessary. When the level of power is changed, the resistance value must adjust accordingly as quickly as possible. A rapid thermal stabilization is important in applications where the steady-state value of resistance according to all internal and external factors must be achieved quickly to within a few ppm.

While most resistor technologies may take minutes for thermal stabilization to its steady-state value, a VFR resistor is capable of almost immediate stabilization, down to within a few ppm in under a second. The exact response is dependent on the ambient temperature as well as the change in power applied; the heat flow when power is applied places mechanical stresses on the element and as a result causes temperature gradients. Regardless, Bulk Metal Foil outperforms all other technologies by a large margin (see Figure 3).

Reason 4: Resistance Tolerance

Why do users employ tight-tolerance resistors? A system, device, or one particular circuit element must perform for a specified period of time and still perform within specification at the end of that service period. During its service life, it may have been
subjected to some hostile working conditions and therefore may no longer be within the purchased tolerance. One reason for specifying a tighter purchased tolerance than the end-of-life error budget tolerance is to allow room for service shifts. Another reason is that the error budget is more economically applied to resistors than to most other components.

Bulk Metal Foil resistors are calibrated as accurately as 0.001% by selectively trimming various adjusting points that have been designed into the photo-etched pattern of the resistive element (see Figure 4). They provide predictable step increases in resistance to the desired tolerance level. Trimming the pattern at one of these adjusting points will force the current to seek another longer path, thus raising the resistance value of the element by a specific percentage.

The trimming operations increase resistance in precise steps but from remote locations, so that the etched grid in the active area remains reliable and noise-free (see Figure 5). In the fine adjusted areas, trimming affects the final resistance value by smaller and smaller amounts down to 0.001% and finally 0.0005% (5 ppm). This is the trimming resolution (see Figure 4).

![Figure 4. VFR’s S102C resistor element](image)

The trimming operations increase resistance in precise steps but from remote locations, so that the etched grid in the active area remains reliable and noise-free (see Figure 5). In the fine adjusted areas, trimming affects the final resistance value by smaller and smaller amounts down to 0.001% and finally 0.0005% (5 ppm). This is the trimming resolution (see Figure 4).

Reason 5: Load Life Stability

Why are designers concerned about stability with applied load? Load-life stability is the characteristic most relied upon to demonstrate a resistor’s long-term reliability. Military testing requirements to 10,000 h with limits on amount of shift and the number of failures results in a failure rate demonstration. Precision Bulk Metal Foil resistors have the tightest allowable limits. Whether military or not, the load-life stability of VFR resistors is unparalleled and long-term serviceability is assured.

The reason VFR resistors are so stable has to do with the materials of construction (Bulk Metal Foil and high alumina substrates). For example, the S102C and Z201 resistors are rated at 0.3 W at 125°C with an allowable ΔR of 150 ppm max after 2000 h under load and 500 ppm max after 10,000 h (see Figures 6 and 7 for the demonstrated behavior). Conversely, the ΔR is reduced by decreasing the applied power, which lowers the element temperature rise in VFR resistors. Figure 6 shows the drift due to load-life testing at rated power and Figure 7 shows the drift due to load-life testing at varied power. Reducing the ambient temperature has a marked effect on load-life results and Figure 8 shows the drift due to rated power at different ambient temperatures. The combination of lower power and ambient temperature is shown in Figure 9 for model S102C.

Our engineers have ensured the stability of our resistors through several tests and experiments. Figure 10 displays the results of our tests that have been in progress for 29 years. Fifty sample S102C 10 kΩ resistors have been in a 70°C heating chamber while under 0.1 W applied power for this entire duration. The average deviation in resistance is just 60 ppm.

Figure 11 shows the shelf life performances, documented by a customer, for hermetically sealed VHFP101 Foil resistors for over eight years. The average deviation did not exceed 1 ppm.

For evaluation of load-life stability, the two parameters that must be mentioned together—power rating and ambient temperature—can be joined into one single parameter for a given style of resistor. If the steady-state temperature rise can be established, it can be added to the ambient temperature and the sum will represent the combined (load induced + ambient) temperature. For instance, the S102C VFR resistor has a temperature rise of 9°C per 0.1 W of applied power. This leads to the following example calculations:

If T = 75°C, P = 0.2 W, and t = 2000 hrs.;
Then self-heating = 9°C x 2 = 18°C.

18°C rise + 75°C ambient = 93°C total ΔR.

R max = 80 ppm from the curve of Figure 12.

Figure 12 shows, for the given duration of a load-life test, how the drift increases with the level of the applied combined temperature. As explained above, the combined temperature comprises the effect of power-induced temperature rise and the ambient temperature. The curve shows maximum drift.
Ten Technical Reasons to Choose VFR Resistors for Your Circuit

Figure 6. Relative resistance change ($\Delta R/R$) as a function of time, load 0.3 W, +125°C ambient

Figure 7. $\Delta R/R = f(\text{time})$, loads 0.05 to 0.5 W, +125°C ambient

Figure 8. $\Delta R/R = f(\text{time})$, loads 0.03 W, different ambient temperatures

Figure 9. $\Delta R/R = f(\text{time})$, loads 0.05 to 0.5 W, +25°C ambient

Figure 10. Long-term stability over 29 years, 0.1 W at 70°C, 50 samples (S102C, 10 kΩ)

Figure 11. Shelf life test results of hermetically sealed VHP101 foil resistors over 8 years
Reason 6:
High Speed and Response Time

The equivalent circuit of a resistor, as shown in Figure 13, combines a resistor in series with an inductance and in parallel with a capacitance (PLC). Resistors can perform like an R/C circuit, filter, or inductor depending on their geometry. In spiraled and wirewound resistors, this reactance is created by the loops and spaces formed by the spirals or turns of wire. Figure 14 shows how the capacitance and inductance increase as the resistance value increases due to continually increasing the number of spirals or turns.

Certain assembly techniques attempt to mitigate the inductance in wirewound resistors, but all have only limited effect. On the other hand, in planar resistors such as the Bulk Metal Foil resistors, the geometry of the lines of the resistor patterns is intentionally designed to counteract this reactance. Figure 15 shows a typical serpentine pattern of a planar resistor. Opposing current directions in adjacent lines reduce mutual inductance while geometry-related inter-line capacitances in series reduce overall capacitance. Both inductance and capacitance produce reactance proportional to the operating frequency, which changes the effective resistance and the phase between the current and voltage in the circuit.

Both inductive and capacitive reactance distort input signals, particularly in pulse applications. Figure 16 shows the current response to a voltage pulse comparing a fast Bulk Metal Foil resistor to a slower wirewound resistor. Here a pulse width of one nanosecond would have been completely missed by the wirewound resistor, while the VFR resistor achieves full replication in the time allotted.
In frequency applications, these reactive distortions also cause changes in apparent resistance (impedance) with changes in frequency. Figure 17 shows a family of curves relating the AC resistance to the DC resistance in Bulk Metal Foil resistors. Very good response is seen in the 100 Ω range out to 100 MHz, and all values have a good response out to 1 MHz. The performance curves for other resistor technologies can be expected to show considerably more distortion (particularly wirewound devices).

Figure 17. Effect of operation at frequency; for higher frequency, please contact the Application Engineering Department at foil@vpgsensors.com

Reason 7:
Noise: “Hear the Difference”

As sound reproduction requirements become more demanding, the selection of circuit components becomes more exacting and the resistors in the signal path are critical. Measurement instrumentation based on low-level signal inputs and high gain amplification cannot tolerate microvolt-level background noise when the signal being measured is itself in the microvolt range. Although audio circuitry, where signal purity is of the utmost concern, is the most obvious use of noise-free components, other industries and technologies are equally concerned with this characteristic.

Resistors, depending on construction, can be a source of noise. This unintended signal addition is measurable and independent of the presence of a fundamental signal. Figures 18-20 illustrate the effects of resistor noise on a fundamental signal. Resistors made of conductive particles in a non-conductive binder are the most likely to generate noise. In carbon composition and thick film resistors, conduction takes place at points of contact between the conductive particles within the binder matrix. Where these point-to-point contacts are made constitutes a high-resistance conduction site, which is the source for noise. These sites are sensitive to any distortion resulting from expansion mismatch, moisture swelling, mechanical strain, and voltage input levels. The response to these outside influences is an unwanted signal as the current finds its way through the matrix. Figure 21 illustrates this current path.

Resistors made of metal alloys, such as Bulk Metal Foil resistors, are the least likely to be noise sources. Here, the conduction...
is across the inter-granular boundaries of the alloy. The inter-granular current path from one or more metal crystals to another involves multiple and long current paths through the boundaries, reducing the chance for noise generation. Figure 22 illustrates this current path.

![Figure 22. The current path in a resistive alloy.](image)

Reason 9: Electrostatic Discharge (ESD)

Electrostatic discharge (ESD) can be defined as a rapid transfer of charge between bodies at different electrical potentials—either by direct contact, arcing, or induction—in an attempt to become electrically neutral. The human threshold for feeling an ESD is 3000 V, so any discharge that can be felt is above this voltage level. Because the duration of this high-voltage spike is less than a microsecond long, the net energy is small compared to the size of the human body over which it is spread. From the human body’s point of view, ESD does no harm. But when the discharge is across a small electronic device, the relative energy density is so great that many components can be damaged by ESD at levels as low as 3000 V or even 500 V.

ESD damage is generally divided into three categories:

- **Parametric failure**—the ESD event alters the resistance of the component causing it to shift from its required tolerance. This failure does not directly pertain to functionality; thus a parametric failure may be present even if the device is still functional.
- **Catastrophic damage**—the ESD event causes the device to immediately stop functioning. This may occur after one or a number of ESD pulses, and may have many causes, such as human body discharge or the mere presence of an electrostatic field.
- **Latent damage**—the ESD event causes moderate damage to the device, which is not noticeable, as the device appears to be functioning correctly. However, the load life of the device is dramatically reduced, as further degradation caused by operating stresses may cause the device to fail during service. This defect is of greatest concern as it is very difficult to detect by visual inspection or re-measurement.

In resistors, ESD sensitivity is a function of their size. The smaller the resistor, the less space there is to spread the energy pulsed through it from the ESD. This energy concentration in a small area of a resistor’s active element causes it to heat up, which could lead to irreversible damage. With the growing trend of miniaturization, electronic devices, including resistors, are becoming smaller and smaller, causing them to be more prone to ESD damage.

Thus, the superiority of Bulk Metal Foil precision resistors over thin film resistors, when subjected to ESD is attributed mainly to their greater thickness. Foil is 100 times thicker than thin film, and therefore the heat capacity of the resistive foil layer is much higher compared to the thin film layer. Thin film is created through particle deposition processes (evaporation or sputtering), while
foil is a bulk alloy with a crystalline structure created through hot and cold rolling of the melt.

Tests performed have indicated that foil chip resistors can withstand ESD events at least to 25 kV (data available), while thin and thick film chip resistors have been seen to undergo catastrophic failures at electric potentials as low as 3000 V (parametric failures at even much less). If the application is likely to confront the resistor with ESD pulses of significant magnitude, the best resistor choice is Bulk Metal Foil.
How Much Performance?

Naturally, not every engineer needs an entire high-performance package for their circuitry. Resistors with much poorer specifications can be used satisfactorily in many applications, so the question of need is divided into four basic categories:

1. Existing applications that can be upgraded by relying on the total performance package of Bulk Metal Foil resistors.
2. Existing applications that require one or more, but not necessarily all, of the performance parameters to be “industry best.”
3. State-of-the-art circuitry that can only be developed now because of the availability of improved specifications for precision resistors.
4. Purposeful pre-planned use of precision resistors to allow for future upgrading (e.g., cost savings can be realized by having the circuit accuracy maintained by the resistors rather than by the active devices, which would greatly increase costs for only slightly better levels of performance).

In category two, for example, the need for a single parameter must be weighed against the economics of the whole package. It could cost less to use a resistor with superior overall performance specifications, because the need for compensating circuitry (and the cost of the associated components plus their assembly) may be eliminated. Cost savings may also be achieved by concentrating precision in the resistors rather than in the active devices, because active devices have greater cost per marginal performance improvement than the resistors do.

Another question that might be posed is, “Would utilizing a higher-performance resistor in order to upgrade equipment performance enhance market acceptance of the equipment?”

Conclusion

All-In-One Resistor

The ten reasons to specify foil resistors are inherent in the design and are not a function of manufacturing variables or a selection process. This combination of parameters is not available in any other resistor technology. VFR resistors combine performance characteristics resulting in unmatched performance and high reliability, satisfying the needs of today’s expanding requirements.

Special Order

Consider VFR resistors for all of your low TCR needs. Special orders may be placed for low-TCR, low-value resistors and tight TCR tracking of individual resistors and network combinations. Contact the Application Engineering Department to discuss your requirements for these and any other TCR applications (email: foil@vpgsensors.com).
Post-Manufacturing Operations (PMO) Enhance the Already Superior Stability of Foil Resistors

These post-manufacturing operations (PMOs) are uniquely applicable to resistors made of resistive foil and they take the already superior stability of VFR devices one step further. They constitute an exercising of the resin that bonds the foil to the substrate, the foil, the alumina, the molding, and the contacts. The operations employed are:

- Temperature cycling/thermal shock
- Short-time overload/power shot (accelerated load life)
- Power conditioning

Temperature Cycling

Temperature cycling is initially done in the chip stage of all production and will eliminate any fallout. The cycling exercises the foil and the contacts without reducing their initial bonding strength. A small reduction in resistance is tolerable during this PMO.

Short-Time Overload (Accelerated Load Life)

Short-time overload (STO) occurs when a circuit is subjected at one point in time to a temporary, unexpected high pulse (or overload) that can result in device failure. This STO is performed on all resistors during manufacturing, with a function of eliminating any hot spots if they exist.

Power Conditioning

The standard load-life curve of a foil resistor exhibits a significant portion of its change in the first 250 h to 500 h, after which the curve begins to stabilize (see Figure 1). The power conditioning exercise applies a load for a specified amount of time to eliminate this knee in the load-life curve. Upon delivery, the resistor will be on the flat part of the curve for your convenience. The power conditioning is a function of the application and should be worked out between our Applications Engineering department and your design team.

![Figure 1](image.png)

Figure 1. \(\Delta R/R = f(\text{Time})\), loads 0.05 to 0.5 W, +125°C ambient

Can We Use PMO on Other Resistor Technologies?

Applying these same operations to thick film, thin film, and wirewound resistors has vastly different consequences and can drive these devices out of tolerance or create an open circuit. The resistors experience too many failures to discuss here. On the other hand, these operations are an enhancement to foil resistor performance and should be considered when the level of stability required is beyond the published limits for standard products.

For further information and additional custom-designed PMO, please contact our Application Engineering department at foil@vpgsensors.com.
Surface-Mount Resistors

Key Benefits
- Temperature coefficient of resistance (TCR): ±0.2 ppm/ºC (−55ºC to +125ºC, +25ºC ref.) typical with Z Foil
- Resistance tolerance to ±0.01%
- Power coefficient of resistance (PCR) “ΔR due to self heating”: 5 ppm at rated power with Z Foil
- Electrostatic discharge (ESD) at least to 25 kV
- Overload capability (6.25 x rated power, 5) <0.005% (50 ppm)
- Rise Time: 1 ns without ringing
- Structure and process provides low sensitivity to moisture
- Non-inductive, non-capacitive image design
- Current noise: 0.010 μVRMS/V of applied voltage (<−40 dB)
- Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
- Matched sets are available upon request
- VFR resistors are not restricted to standard values; specific “as required” values can be supplied at no extra cost or delivery (e.g. 1K2345 kΩ vs. 1 kΩ)
- Lead (Pb)-free, gold, and tin/lead terminations available
- Now available with flexible terminations
- Prototype quantities available in just five working days or sooner

Applications
- Military and aerospace: DLA Drawings, EPPL, ESA, and EEE-INST-002 are available
- Commercial aviation
- Aircraft and missile guidance systems
- Medical
- Automatic test equipment (ATE)
- Electron beam applications
- Measurement systems
- Current sensing
- High-precision amplifiers
- Weighing systems

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Surface-Mount Resistor Selection

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRSM0603 (Z1 Foil Technology)</td>
<td>Y4021</td>
<td>100Ω to 4 kΩ ±0.01% ±0.2 ppm/ºC</td>
<td>0.1W</td>
<td>±0.0025%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM0805 (Z1 Foil Technology)</td>
<td>Y4022</td>
<td>5Ω to 8 kΩ ±0.01% ±0.2 ppm/ºC</td>
<td>0.2W</td>
<td>±0.0025%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM1206 (Z1 Foil Technology)</td>
<td>Y4023</td>
<td>5Ω to 25 kΩ ±0.01% ±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.0025%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM1506 (Z1 Foil Technology)</td>
<td>Y4024</td>
<td>5Ω to 30 kΩ ±0.01% ±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.0025%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM2010 (Z1 Foil Technology)</td>
<td>Y4025</td>
<td>5Ω to 70 kΩ ±0.01% ±0.2 ppm/ºC</td>
<td>0.5W</td>
<td>±0.0025%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM2512 (Z1 Foil Technology)</td>
<td>Y4027</td>
<td>5Ω to 125 kΩ ±0.01% ±0.2 ppm/ºC</td>
<td>0.75W</td>
<td>±0.0025%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uncalibrated chips are available for FRSM product family.

* Tighter performances and higher or lower value resistances are available for all models upon request.
Surface-Mount Resistors

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range *</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSMP0603 (Z Foil)</td>
<td>Y1636</td>
<td>Ultra high-precision wrap-around chip resistor</td>
<td>100Ω to 5 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.1W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSMP0805 (Z Foil)</td>
<td>Y1624</td>
<td>Ultra high-precision wrap-around chip resistor DLA 07024</td>
<td>5Ω to 8 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.2W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSMP1206 (Z Foil)</td>
<td>Y1625</td>
<td>Ultra high-precision wrap-around chip resistor DLA 07025</td>
<td>5Ω to 25 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSMP1506 (Z Foil)</td>
<td>Y1626</td>
<td>Ultra high-precision wrap-around chip resistor DLA 03010</td>
<td>5Ω to 30 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSMP2010 (Z Foil)</td>
<td>Y1627</td>
<td>Ultra high-precision wrap-around chip resistor DLA 06001</td>
<td>5Ω to 70 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.5W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSMP2018 (Z Foil)</td>
<td>Y1637</td>
<td>Ultra high-precision wrap-around chip resistor DLA 9300</td>
<td>5Ω to 20 kΩ**</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.75W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSMP2512 (Z Foil)</td>
<td>Y1628</td>
<td>Ultra high-precision wrap-around chip resistor DLA 06002</td>
<td>10Ω to 125 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.75W</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

Uncalibrated chips are available for VSMP product family.

* Tighter performances and higher or lower value resistances are available for all models upon request.

** Higher values from 20 kΩ to 150 kΩ can be supplied upon special request.
Surface-Mount Resistors

Surface-Mount

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range *</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSM0805</td>
<td>Y1172</td>
<td>High-precision wrap-around chip resistor DLA 07024</td>
<td>5Ω to 8kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.1W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSM1206</td>
<td>Y1496</td>
<td>High-precision wrap-around chip resistor DLA 07025</td>
<td>5Ω to 25kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.15W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSM1506</td>
<td>Y1455</td>
<td>High-precision wrap-around chip resistor DLA 03010</td>
<td>5Ω to 30kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.2W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSM2010</td>
<td>Y1611</td>
<td>High-precision wrap-around chip resistor DLA 06001</td>
<td>5Ω to 70kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSM2512</td>
<td>Y1612</td>
<td>High-precision wrap-around chip resistor DLA 06002</td>
<td>5Ω to 125kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.4W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Flex-1</td>
<td>Y2014</td>
<td>Surface mount with flexible terminations system and load-life stability of 0.005%</td>
<td>5Ω to 33kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.25W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>SMR1DZ (Z Foil) 6.0 mm x 3.2 mm</td>
<td>Y1745</td>
<td>Ultra high-precision molded resistor with flexible terminations DLA 06020</td>
<td>5Ω to 33kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.25W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>SMR1D</td>
<td>Y1121</td>
<td>High-precision molded resistor with flexible terminations DLA 06020</td>
<td>5Ω to 33kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.25W</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

Uncalibrated chips are available for VSM product family.

* Tighter performances and higher or lower value resistances are available for all models upon request.

Revision: 01-Jun-2015

vishayfoilresistors.com
Surface-Mount Resistors

Surface-Mount Resistor Selector Guides

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range</th>
<th>Best Tolerance</th>
<th>TCR ((-55ºC \text{ to } +125ºC, \text{ } +25ºC \text{ ref.})) Typical</th>
<th>Rated Power at (+70ºC)</th>
<th>Load Life Stability 2000 Hours, (+70ºC) Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex-2</td>
<td>Y2015</td>
<td>Surface mount with flexible terminations system and load-life stability of 0.005%</td>
<td>50 to 80 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>SMR3DZ (Z Foil)</td>
<td>Y1746</td>
<td>Ultra high-precision molded resistor with flexible terminations DLA 06021</td>
<td>50 to 80 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>SMR3D</td>
<td>Y1169</td>
<td>High-precision molded resistor with flexible terminations DLA 06021</td>
<td>50 to 80 kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>SMR3P (Z Foil)</td>
<td>Y1168</td>
<td>Ultra high-precision industrial grade molded surface-mount resistor</td>
<td>1000 to 15 kΩ</td>
<td>±0.01%</td>
<td>±0.5 ppm/ºC Maximum</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.

SMRxDZ Flexible Termination - Thermal Expansion Effect

- **Bulk Metal Foil SMR Resistor**
 - Before Thermal Expansion of PCB
 - After Thermal Expansion of PCB - ∆T

- **Wrap Around Metal Film**
 - Before Thermal Expansion of PCB
 - After Thermal Expansion of PCB - ∆T

![Bulk Metal Foil SMR Resistor](image1)

![Wrap Around Metal Film](image2)
<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range *</th>
<th>Best Tolerance</th>
<th>TCR (–55°C to +125°C, +25°C ref.) Typical</th>
<th>Rated Power at +70°C</th>
<th>Load Life Stability 2000 Hours, +70°C Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRST0603</td>
<td>Y4013</td>
<td>New</td>
<td>10KΩ to 4 KΩ</td>
<td>±0.01%</td>
<td>±2.5 ppm/°C</td>
<td>0.1W</td>
<td>±0.0025%</td>
</tr>
<tr>
<td>FRST0805</td>
<td>Y4014</td>
<td>New</td>
<td>5Ω to 8 kΩ</td>
<td>±0.01%</td>
<td>±2.5 ppm/°C</td>
<td>0.2W</td>
<td>±0.0025%</td>
</tr>
<tr>
<td>FRST1206</td>
<td>Y4015</td>
<td>New</td>
<td>5Ω to 25 kΩ</td>
<td>±0.01%</td>
<td>±2.5 ppm/°C</td>
<td>0.3W</td>
<td>±0.0025%</td>
</tr>
<tr>
<td>FRST1506</td>
<td>Y4016</td>
<td>New</td>
<td>5Ω to 30 kΩ</td>
<td>±0.01%</td>
<td>±2.5 ppm/°C</td>
<td>0.3W</td>
<td>±0.0025%</td>
</tr>
<tr>
<td>FRST2010</td>
<td>Y4017</td>
<td>New</td>
<td>5Ω to 70 kΩ</td>
<td>±0.01%</td>
<td>±2.5 ppm/°C</td>
<td>0.5W</td>
<td>±0.0025%</td>
</tr>
<tr>
<td>FRST2512</td>
<td>Y4018</td>
<td>New</td>
<td>5Ω to 125 KΩ</td>
<td>±0.01%</td>
<td>±2.5 ppm/°C</td>
<td>0.75W</td>
<td>±0.0025%</td>
</tr>
</tbody>
</table>

* For 0603 values between 4K and 5K, please contact us.
Surface-Mount Resistors

Surface-Mount, High Temperature Applications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FRSH0603</td>
<td>Y4061</td>
<td>100Ω to 4 kΩ*</td>
<td>±0.02%</td>
<td>±2.5 ppm/ºC</td>
<td>0.12W</td>
<td>±0.05%</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>FRSH0805</td>
<td>Y4062</td>
<td>5Ω to 8 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/ºC</td>
<td>0.3W</td>
<td>±0.05%</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>FRSH 1206</td>
<td>Y4063</td>
<td>5Ω to 25 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/ºC</td>
<td>0.5W</td>
<td>±0.05%</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>FRSH1506</td>
<td>Y4064</td>
<td>5Ω to 30 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/ºC</td>
<td>0.6W</td>
<td>±0.05%</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>FRSH2010</td>
<td>Y4065</td>
<td>5Ω to 70 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/ºC</td>
<td>0.8W</td>
<td>±0.05%</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>FRSH2512</td>
<td>Y4066</td>
<td>5Ω to 125 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/ºC</td>
<td>1.2W</td>
<td>±0.05%</td>
<td>±0.05%</td>
<td></td>
</tr>
</tbody>
</table>

* For 0603 values between 4k and 5k, please contact us
** Tighter performances and higher or lower value resistances are available for all models upon request.
*** For further information, please refer to FRSH datasheet.
Surface-Mount Resistor Models

Surface-Mount, High Temperature Applications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HTHG5x5</td>
<td>Y0780</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 10kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.025W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHG15x5</td>
<td>Y0781</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 30kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.05W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHG15x10</td>
<td>Y0782</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>30Ω to 80kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.075W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHG0603</td>
<td>Y0794</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>100Ω to 5kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.0125W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHG0805</td>
<td>Y0795</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 8kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.02W</td>
<td>±0.1%</td>
</tr>
<tr>
<td>HTHG1206</td>
<td>Y0796</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 25kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.033W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHG1506</td>
<td>Y0797</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 30kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.04W</td>
<td>±0.1%</td>
</tr>
<tr>
<td>HTHG2010</td>
<td>Y0798</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 70kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.1W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHG2512</td>
<td>Y0799</td>
<td>Z1 Foil Technology, high temperature hybrid chip up to +240°C, connection method: gold wire bonding</td>
<td>5Ω to 100kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.15W</td>
<td>±0.05%</td>
</tr>
</tbody>
</table>

* For further information, please refer to the HTHG datasheet at www.vishaypg.com/doc?63221

Revision: 01-Jun-2015

vishayfoilresistors.com
<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range</th>
<th>Best Tolerance</th>
<th>TCR (-55ºC to +220ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +220ºC*</th>
<th>Long Term Stability at +240°C for 2000 Hours, No Power - Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTHA0603</td>
<td>Y0774</td>
<td>New</td>
<td>100Ω to 5 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.0125W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHA0805</td>
<td>Y0775</td>
<td>New</td>
<td>5Ω to 8 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.02W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHA1206</td>
<td>Y0776</td>
<td>New</td>
<td>5Ω to 25 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.033W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHA1506</td>
<td>Y0777</td>
<td>New</td>
<td>5Ω to 30 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.04W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHA2010</td>
<td>Y0778</td>
<td>New</td>
<td>5Ω to 70 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.1W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>HTHA2512</td>
<td>Y0779</td>
<td>New</td>
<td>5Ω to 125 kΩ</td>
<td>±0.02%</td>
<td>±2.5 ppm/°C</td>
<td>0.15W</td>
<td>±0.05%</td>
</tr>
</tbody>
</table>

* For further information, please refer to HTHA datasheet.
** For other mounting options: flip chip (facing down) mounted by electrical conductive-epoxy or reflow soldering, please contact the application engineering department: foil@vpgsensors.com
Surface-Mount Resistors

## Model	Global Model	Product Description	Resistance Range*	Best Tolerance	TCR (–55°C to +125°C, +25°C ref.) Typical	Rated Power at +70°C	Load Life Stability 2000 Hours, +70°C Under Power-Typical
Surface-Mount | | | | | | | |
FRFC0805 | Y4072 New | Z1 Foil Technology, ultra high-precision flip chip resistor | 5Ω to 8 KΩ | ±0.01% | ±0.2 ppm/°C | 0.2W | ± 0.0025 %
FRFC1206 | Y4073 New | 5Ω to 20 KΩ | ±0.01% | ±0.2 ppm/°C | 0.4W | ± 0.0025 %
VFCP0805 | Y1629 | 5Ω to 8 kΩ | ±0.01% | ±0.2 ppm/°C | 0.1W | ±0.005%
VFCP1206 | Y1630 | 5Ω to 25 kΩ | ±0.01% | ±0.2 ppm/°C | 0.25W | ±0.005%
VFCP1506 | Y1631 | 5Ω to 30 kΩ | ±0.01% | ±0.2 ppm/°C | 0.3W | ±0.005%
VFCP2010 | Y1632 | 5Ω to 70 kΩ | ±0.01% | ±0.2 ppm/°C | 0.4W | ±0.005%
VFCP2512 | Y1633 | 5Ω to 125 kΩ | ±0.01% | ±0.2 ppm/°C | 0.6W | ±0.005%
VPR220S | Y1122 | Precision foil power resistors, TO-220 configuration, 2-terminal connection | 5Ω to 10 kΩ | ±0.01% | ±2 ppm/°C | 8W on heat sink 1.5W in free air | +0.005% at +25°C |
VPR220SZ | Y1623 | Z1 Foil Technology, ultra high-precision surface-mount power current sense resistor | 5Ω to 10 kΩ | ±0.01% | ±0.2 ppm/°C | 8W on heat sink 1.5W in free air | +0.005% at +25°C |

* Tighter performances and higher or lower value resistances are available for all models upon request.
Surface-Mount Resistor Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (−55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>303261 (0603)</td>
<td></td>
<td>100Ω to 2 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.05W</td>
<td>±0.02%</td>
</tr>
<tr>
<td>303262 (0805)</td>
<td></td>
<td>100Ω to 5 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.1W</td>
<td>±0.02%</td>
</tr>
<tr>
<td>303263 (1206)</td>
<td>FRSM 21 Foil Technology configuration screen/test flow in compliance with EEE-INST-002 (Tables 2A and 3A, Film/Foil, Level 1) and MIL-PRF-55342</td>
<td>100Ω to 14 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.15W</td>
<td>±0.02%</td>
</tr>
<tr>
<td>303264 (1506)</td>
<td></td>
<td>100Ω to 16 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.2W</td>
<td>±0.02%</td>
</tr>
<tr>
<td>303265 (2010)</td>
<td></td>
<td>100Ω to 35 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.02%</td>
</tr>
<tr>
<td>303266 (2512)</td>
<td></td>
<td>100Ω to 75 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.4W</td>
<td>±0.02%</td>
</tr>
<tr>
<td>Model</td>
<td>Product Description</td>
<td>Resistance Range*</td>
<td>Best Tolerance</td>
<td>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</td>
<td>Rated Power at +70ºC</td>
<td>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------------------</td>
<td>----------------</td>
<td>--</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>303134 (0805)</td>
<td>Surface-Mount, Military and Space Applications, Ultra high-precision surface-mount chip resistors, VSMP Z Foil Technology configuration, screen/test flow in compliance with EEE-INST-002 and MIL-PRF-55342</td>
<td>100 Ω to 5 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.1W</td>
<td>±0.03% maximum</td>
</tr>
<tr>
<td>303135 (1206)</td>
<td></td>
<td>100 Ω to 14 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.15W</td>
<td>±0.03% maximum</td>
</tr>
<tr>
<td>303136 (1506)</td>
<td></td>
<td>100 Ω to 16 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.2W</td>
<td>±0.03% maximum</td>
</tr>
<tr>
<td>303137 (2010)</td>
<td></td>
<td>100 Ω to 35 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.03% maximum</td>
</tr>
<tr>
<td>303138 (2512)</td>
<td></td>
<td>100 Ω to 75 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.4W</td>
<td>±0.03% maximum</td>
</tr>
<tr>
<td>303139</td>
<td>Molded surface-mount, space-and-military-grade resistors SMRxDZ, screen/test flow in compliance with EEE-INST-002, Level 1 and MIL-PRF-55182</td>
<td>50 Ω to 14 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.25W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>303140</td>
<td></td>
<td>50 Ω to 40 kΩ</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>
Through-Hole Resistors

Key Benefits

- **Absolute Temperature Coefficient of Resistance (TCR):**
 - ±0.2 ppm/°C (–55°C to +125°C, +25°C ref.) typical with Z Foil
- **TCR tracking:** to 0.1 ppm/°C
- **Power coefficient of resistance (PCR, “ΔR due to self heating”):** 5 ppm at rated power with Z Foil
- **Resistance tolerance:** absolute and match to ±0.005% (50 ppm)
- **Electrostatic discharge (ESD) at least to 25 kV**
- **Load-life stability:** to ±0.005% at +70°C for 10,000 at rated power
- **Current noise:** 0.010 μVRMS/V of applied voltage (<–40 dB)
- **VFR resistors are not restricted to standard values; specific “as required” values can be supplied at no extra cost or delivery (e.g., 1.2345 kΩ vs. 1 kΩ). Prototype quantities available in just five working days or sooner**
- **Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)**
- **Rise time:** 1 ns, without ringing

Applications

- **Military**
- **Medical**
- **Electron beam applications**
- **Industrial**
- **Down-hole**
- **Commercial and military avionics**
- **Audio**
- **Weigh scales**
- **Instrumentation amplifiers**
- **Laboratory**
- **Measurement systems**
- **Aerospace**
- **Automatic test equipment (ATE)**

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Through-Hole Resistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole, Z Foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burden-Z (A)</td>
<td>Y2025, Y2026</td>
<td>High precision bulk metal foil resistor</td>
<td>1Ω to 5000Ω</td>
<td>±0.005%</td>
<td>±0.2 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Burden-K (L)</td>
<td>Y2023, Y2024</td>
<td>High precision bulk metal foil resistor</td>
<td>1Ω to 5000Ω</td>
<td>±0.005%</td>
<td>±1 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Burden-C (J)</td>
<td>Y2021, Y2022</td>
<td>High precision bulk metal foil resistor</td>
<td>1Ω to 5000Ω</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>RTD-K (L)</td>
<td>Y2010, Y2011</td>
<td>Handy resistor simulates RTD temperature outputs</td>
<td>10Ω to 5 KΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>RTD-C (J)</td>
<td>Y2012, Y2013</td>
<td>Handy resistor simulates RTD temperature outputs</td>
<td>10Ω to 5 KΩ</td>
<td>±0.005%</td>
<td>±1 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Z201, Z201L</td>
<td>Y1453, Y1454</td>
<td>Ultra high-precision Z Foil resistor</td>
<td>10Ω to 100 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Z202</td>
<td>Y1073</td>
<td>Ultra high-precision miniature resistor</td>
<td>5Ω to 30 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>0.25W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Z203, Z203L</td>
<td>Y1445, Y1446</td>
<td>Z1 Foil Technology, ultra high-precision resistor for metrology and laboratory applications</td>
<td>10Ω to 100 kΩ</td>
<td>±0.005%</td>
<td>±0.5 ppm/°C maximum (+25ºC to +125ºC)</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Through-Hole, Z Foil

<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55°C to +125°C, +25°C ref.) Typical</th>
<th>Rated Power</th>
<th>Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z201 HT</td>
<td>Y1620 Y1621</td>
<td>Through-hole foil resistor for high temperature applications up to +200°C</td>
<td>100 Ω to 100 kΩ</td>
<td>± 0.01 %</td>
<td>±0.2 ppm/°C</td>
<td>0.4 W</td>
<td>2000 Hours, +70°C Under Power-Typical</td>
</tr>
<tr>
<td>Z204</td>
<td>Y1441</td>
<td>Ultra high-precision Z Foil resistor</td>
<td>100 Ω to 200 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/°C</td>
<td>1 W at +70°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5 W at +125°C</td>
<td></td>
</tr>
<tr>
<td>Z205</td>
<td>Y1443</td>
<td>Ultra high-precision Z Foil resistor</td>
<td>100 Ω to 300 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/°C</td>
<td>1.5 W at +70°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75 W at +125°C</td>
<td></td>
</tr>
<tr>
<td>Z206</td>
<td>Y1447</td>
<td>Ultra high-precision Z Foil resistor</td>
<td>100 Ω to 600 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/°C</td>
<td>2 W at +70°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>up to 400 K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 W at +125°C over to 400 K</td>
<td></td>
</tr>
<tr>
<td>AUR</td>
<td>Y4700 Y4701 Y4702 Y4703</td>
<td>Through-hole Z Foil, low profile coated for audio applications with low harmonic distortion, and noise stabilization</td>
<td>5 Ω to 120 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>0.3 W</td>
<td>±0.01%</td>
</tr>
<tr>
<td>VAR</td>
<td>Y0706</td>
<td>Ultra high-precision, high resolution Z Foil audio resistor (no molded jacket)</td>
<td>100 Ω to 100 kΩ</td>
<td>±0.01%</td>
<td>±0.05 ppm/°C</td>
<td>0.4 W at +70°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2 W at +125°C</td>
<td></td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (−55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole, Z Foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5A101</td>
<td>Y0098</td>
<td>Ultra high-precision axial Z Foil resistor</td>
<td>5Ω to 100 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/ºC</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1022, E102.JZ</td>
<td>Y1183 Y1182</td>
<td>Ultra high-performance high ohmic value, small size</td>
<td>100 kΩ to 200 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/ºC</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPR220Z (Z Foil)</td>
<td>Y1622</td>
<td>Z Foil precision foil power resistors, TO-220 configuration, 2-terminal connection</td>
<td>5Ω to 10 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>8W on heat sink</td>
<td>±0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSC1.Z, VSH1.Z (Z Foil)</td>
<td>Y0904 Y0876</td>
<td>High-precision low profile conformally coated resistors, also used for audio application</td>
<td>5Ω to 60 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W at +70ºC</td>
<td>±0.01%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSC2.Z, VSH2.Z (Z Foil)</td>
<td>Y0905 Y0937</td>
<td></td>
<td>600 to 120 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W at +70ºC</td>
<td>±0.01%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Through-Hole Resistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55°C to +125°C, +25°C ref.) Typical</th>
<th>Rated Power</th>
<th>Load Life Stability 2000 Hours, +70°C Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S102C</td>
<td>Y0007</td>
<td>S-Series high-precision resistor DLA 89039 (S102C)</td>
<td>1Ω to 150 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>Up to 100 K: 0.6W at +70°C 0.3W at +125°C Over 100 K: 0.4W at +70°C 0.2W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>S104D S104F</td>
<td>Y0011 Y0511</td>
<td>S-Series high-precision resistor</td>
<td>1Ω to 500 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>Up to 200 K: 1W at +70°C 0.5W at +125°C Over 200 K: 0.6W at +70°C 0.3W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>S105D S105F</td>
<td>Y0012 Y4012</td>
<td>S-Series high-precision resistor</td>
<td>1Ω to 750 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>Up to 300 K: 1.5W at +70°C 0.75W at +125°C Over 300 K: 0.8W at +70°C 0.4W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>S106D</td>
<td>Y0013</td>
<td>S-Series high-precision resistor</td>
<td>0.5Ω to 1 MΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>Up to 400 K: 2W at +70°C 1W at +125°C Over 400 K: 1W at +70°C 0.5W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>S102K S102L</td>
<td>Y0062 Y0786</td>
<td>S-Series high-precision resistor DLA 97009 (S102K)</td>
<td>1Ω to 100 kΩ</td>
<td>±0.005%</td>
<td>±1 ppm/°C</td>
<td>Up to 100 K: 0.6W at +70°C 0.3W at +125°C Over 100 K: 0.4W at +70°C 0.2W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>S104K</td>
<td>Y0101</td>
<td>S-Series high-precision resistor</td>
<td>1Ω to 300 kΩ</td>
<td>±0.005%</td>
<td>±1 ppm/°C</td>
<td>Up to 200 K: 1W at +70°C 0.5W at +125°C Over 200 K: 0.6W at +70°C 0.3W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>S105K</td>
<td>Y0102</td>
<td>S-Series high-precision resistor</td>
<td>1Ω to 500 kΩ</td>
<td>±0.005%</td>
<td>±1 ppm/°C</td>
<td>Up to 300 K: 1.5W at +70°C 0.75W at +125°C Over 300 K: 0.8W at +70°C 0.4W at +125°C</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

Uncalibrated S102 chip on strip resistors are available.

* Tighter performances and higher or lower value resistances are available for all models upon request.
<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>S106K</td>
<td>Y0103</td>
<td>S-Series high-precision resistor, DLA 97009 [S102K]</td>
<td>0.5Ω to 600 kΩ</td>
<td>±0.005%</td>
<td>±1 ppm/ºC</td>
<td>Up to 400 K: 2W at +70ºC 1W at +125ºC Over 400 K: 1W at +70ºC 0.5W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>E102C, E102J</td>
<td>Y1186</td>
<td>High-performance resistor, high ohmic value, small size</td>
<td>150 kΩ to 300 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/ºC</td>
<td>0.6W at +70ºC 0.3W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VPR220</td>
<td>Y0925</td>
<td>Precision foil power resistors, TO-220 configuration, 2-terminal connection</td>
<td>5Ω to 10 kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>8W at +25ºC on heat sink 1.5W in free air</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSR, VSRJ</td>
<td>Y0075</td>
<td>VSR Series industrial precision resistors</td>
<td>1Ω to 150 kΩ</td>
<td>±0.01%</td>
<td>±4 ppm/ºC</td>
<td>Up to 100 K: 3W at +70ºC 0.2W at +125ºC Over 100 K: 0.25W at +70ºC 0.15W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSR4</td>
<td>Y0020</td>
<td>VSR Series industrial precision resistors</td>
<td>1Ω to 500 kΩ</td>
<td>±0.005%</td>
<td>±4 ppm/ºC</td>
<td>Up to 200 K: 0.5W at +70ºC 0.4W at +125ºC Over 200 K: 0.25W at +70ºC 0.2W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSR5</td>
<td>Y0021</td>
<td>VSR Series industrial precision resistors</td>
<td>1Ω to 750 kΩ</td>
<td>±0.005%</td>
<td>±4 ppm/ºC</td>
<td>Up to 300 KΩ: 0.75W at +70ºC 0.6W at +125ºC Over 300 KΩ: 0.4W at +70ºC 0.3W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VSR6</td>
<td>Y0022</td>
<td>VSR Series industrial precision resistors</td>
<td>0.5Ω to 1 MΩ</td>
<td>±0.005%</td>
<td>±4 ppm/ºC</td>
<td>Up to 400 K: 1.6W at +70ºC 0.8W at +125ºC Over 400 KΩ: 0.5W at +70ºC 0.4W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VRM</td>
<td>Y0073</td>
<td>Industrial miniature precision resistor</td>
<td>5Ω to 50 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/ºC</td>
<td>0.25W at +70ºC 0.125W at +125ºC</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Through-Hole Resistors

<table>
<thead>
<tr>
<th>Type*</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55°C to +125°C, +25°C ref.) max</th>
<th>Rated Power</th>
<th>Load Life Stability, 2000 Hours +25°C at Rated Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTA52Z</td>
<td>Y0090</td>
<td>New</td>
<td>5Ω to 500 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>1W at +70°C 0.5W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VTA53Z</td>
<td>Y0091</td>
<td>New</td>
<td>5Ω to 300 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.66W at +70°C 0.33W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VTA54Z</td>
<td>Y0092</td>
<td>New</td>
<td>5Ω to 300 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.5W at +70°C 0.25W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VTA55Z</td>
<td>Y0093</td>
<td>New</td>
<td>5Ω to 150 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.3W at +70°C 0.15W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VTA56Z</td>
<td>Y0094</td>
<td>New</td>
<td>5Ω to 150 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.25W at +70°C 0.125W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VTA57Z</td>
<td>Y0095</td>
<td>New</td>
<td>5Ω to 100 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.25W at +70°C 0.125W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VMTA55Z</td>
<td>Y0096</td>
<td></td>
<td>5Ω to 30 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.2W at +70°C 0.1W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VMTB60Z</td>
<td>Y0097</td>
<td></td>
<td>5Ω to 60 kΩ</td>
<td>± 0.01 %</td>
<td>± 0.2 ppm/°C</td>
<td>0.25W at +70°C 0.125W at +125°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VTA52</td>
<td>Y0028</td>
<td></td>
<td>5Ω to 500 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>1W at +70°C 0.5W at +125°C</td>
<td>±0.05%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Through-Hole Resistors

<table>
<thead>
<tr>
<th>Type*</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR ((-55^\circ \text{C} \text{ to} +125^\circ \text{C}),) (+25^\circ \text{C} \text{ ref.}) max</th>
<th>Rated Power</th>
<th>Load Life Stability, 2000 Hours (\pm)25° C at Rated Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTA53</td>
<td>Y0029</td>
<td>5Ω to 300 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>0.66W at +70°C 0.33W at +125°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VTA54</td>
<td>Y0054</td>
<td>5Ω to 300 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>0.5W at +70°C 0.25W at +125°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VTA55</td>
<td>Y0058</td>
<td>5Ω to 150 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>0.3W at +70°C 0.15W at +125°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VTA56</td>
<td>Y0060</td>
<td>5Ω to 150 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>0.25W at +70°C 0.125W at +125°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VMTA55</td>
<td>Y0014</td>
<td>5Ω to 30 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>0.2W at +70°C 0.1W at +125°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VMTB60</td>
<td>Y0015</td>
<td>5Ω to 60 kΩ</td>
<td>±0.01%</td>
<td>±8 ppm/°C</td>
<td>0.25W at +70°C 0.125W at +125°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VSC1, VSH1</td>
<td>Y0902 Y0875</td>
<td>5Ω to 60 kΩ</td>
<td>±0.01%</td>
<td>±5 ppm/°C</td>
<td>0.3W at +70°C</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>VSC2, VSH2, VSH4</td>
<td>Y0903 Y0934 Y1452</td>
<td>600 to 240 kΩ</td>
<td>±0.01%</td>
<td>±5 ppm/°C</td>
<td>0.3W at +70°C</td>
<td>±0.05%</td>
<td></td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Through-Hole Resistors

Selector Guides

Through-Hole, Military and Space Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55°C to +125°C, +25°C ref.) Typical</th>
<th>Rated Power at +70°C</th>
<th>Load Life Stability, 2000 Hours at +125°C at Rated Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNC90Z (RNC90S)</td>
<td>Y1189 Y1506 Y0089 Y1508</td>
<td>Through-Hole, Military established reliability QPL</td>
<td>30.1Ω to 121 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C (–55°C to +175°C) maximum</td>
<td>0.6W at +70°C</td>
<td>0.05% maximum</td>
</tr>
<tr>
<td>RNC90Y (RNC90T)</td>
<td>Military established reliability QPL</td>
<td>4.99Ω to 121 kΩ</td>
<td>±0.005%</td>
<td>±5 ppm/°C (–55°C to +125°C) maximum</td>
<td>±10 ppm/°C (125°C to +175°C) maximum</td>
<td>0.6W at +70°C</td>
<td>0.05% maximum</td>
</tr>
<tr>
<td>Z555</td>
<td>Y1288</td>
<td>Z Foil Technology produced in QPL product line</td>
<td>4.99Ω to 121 kΩ</td>
<td>±0.005%</td>
<td>3 ppm/°C maximum</td>
<td>0.6W at +70°C</td>
<td>0.015% maximum</td>
</tr>
<tr>
<td>S555</td>
<td>Y0088</td>
<td>Foil technology produced in QPL product line</td>
<td>1Ω to 150 kΩ</td>
<td>±0.005%</td>
<td>5 ppm/°C</td>
<td>0.6W at +70°C</td>
<td>±0.015% maximum</td>
</tr>
<tr>
<td>303143, 303143L</td>
<td>303143 303143L</td>
<td>Ultra high-precision fixed resistor Z Foil Z201, screen/test flow as modified from S-311-P813 proposed by NASA</td>
<td>100 to 100 kΩ</td>
<td>±0.005%</td>
<td>3 ppm/°C maximum</td>
<td>0.6W at +70°C</td>
<td>±0.005%</td>
</tr>
<tr>
<td>RS92N, RS92NA, AN</td>
<td>Y1442 Y1687 Y1688</td>
<td>CECC-qualified high-precision foil resistor for space applications</td>
<td>80.6Ω to 120 kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/°C</td>
<td>0.5W at +70°C</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>
Power Current-Sensing Resistors

Key Benefits

- Temperature Coefficient of Resistance (TCR):
 - ±0.2 ppm/ºC [-55ºC to +125ºC, +25ºC ref.] typical with Z Foil
- Power coefficient (PCR), “ΔR due to self heating”:
 4 ppm/W or 5 ppm/W at rated power
- Absolute resistance tolerance: ±0.01%
- Power rating: up to 10 W on heat sink
- Current noise: 0.010 μVRMS/V of applied voltage (<–40 dB)
- Four-terminal (Kelvin) connections for high accuracy
- VFR resistors are not restricted to standard values; specific “as required” values can be supplied at no extra cost or delivery (e.g. 1.2345 kΩ vs. 1 kΩ)
- Load-life stability: to ±0.005% at +25ºC, for 2000 h, at rated power
- Rise time: 1 ns without ringing
- Thermal stabilization time <1 s (nominal value
- achieved within 10 ppm of steady-state value)
- Prototype quantities available in just five working days or sooner

Applications

- Military
- Medical
- Aerospace
- Force balance scales
- Electron beam applications
- Switching power supplies
- Electron microscopes
- Gyro navigation controls
- Pressure sensors
- Switching power supplies
- Motor speed controls
- Down-hole (high temperature)
- Weigh scales

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Power Current-Sensing Resistors

VFR power current-sensing resistors were developed with a low absolute TCR and Kelvin connections to meet today’s demand for new and stable resistive products. These resistors are most often used to monitor a current that is directly proportional to some physical characteristic (such as pressure, weight, etc.) being measured by an analog sensor. The resistor converts the current to a voltage that is representative of the physical characteristic and feeds that voltage into control circuits, instrumentation, or other indicators. Deviations induced in the resistor, not representative of the monitored characteristic, can be caused by high absolute TCR response to both ambient temperature and self heating, and can feed erroneous signals into the system. Resistance is usually kept low to reduce the self-heating (Joule effect) portion of the error, while minimizing the stresses that cause long-term resistance changes. It is critical for this resistor to reach thermal equilibrium quickly in circuits that require fast response or where the current changes quickly. Thermal EMF is another important consideration in low-ohmic current sensing resistors used mostly in DC circuits (there is no effect in AC circuitry). VFR resistors are able to minimize this effect through the use of appropriate materials between the resistive layer and the terminations.

Kelvin Connections

Four-terminal connections, or Kelvin connections, are required in these low-ohmic-value resistors to measure a precise voltage drop across the resistive element. The four-terminal configuration eliminates the forward voltage drop error voltage that would be present in the voltage sense leads if a standard two-terminal resistor were used. In current sense resistors, the contact resistance and the termination resistance may be greater than that of the resistive element itself, so lead connection errors can be significant if only two terminal connections are used.

The four-terminal device separates the current leads from the voltage-sensing leads. This configuration eliminates the effect of the lead wire resistance from points A to B and C to D. Overall, Bulk Metal Foil technology provides performance capabilities far greater than any other resistor technology can supply in a product of comparable size.
<table>
<thead>
<tr>
<th>Product</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, 25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface-Mount, Z- Foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCS1610Z (Z Foil)</td>
<td>Y1119</td>
<td>High-precision, current sensing chip resistor (4-terminal)</td>
<td>0.3Ω to 10Ω</td>
<td>±0.5%</td>
<td>±0.2 ppm/ºC</td>
<td>0.25W</td>
<td>±0.015%</td>
</tr>
<tr>
<td>VCS1610</td>
<td>Y1120</td>
<td>High-precision, current sensing chip resistor (4-terminal)</td>
<td>0.1Ω to 10Ω</td>
<td>±0.5%</td>
<td>±2 ppm/ºC</td>
<td>0.25W</td>
<td>±0.015%</td>
</tr>
<tr>
<td>Led1625</td>
<td>Y2019</td>
<td>Ultra high-precision bulk metal foil resistors rating to 8W, TCR of ±0.2 ppm/ºC, and stability of ±0.005%</td>
<td>0.3Ω to 1Ω</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>1W</td>
<td>±0.015%</td>
</tr>
<tr>
<td>VCS1625ZP (Z Foil)</td>
<td>Y1606</td>
<td>Ultra high-precision Z Foil surface-mount current sensing for higher power</td>
<td>0.3Ω to 10Ω</td>
<td>±0.2%</td>
<td>±0.2 ppm/ºC</td>
<td>1W</td>
<td>±0.015%</td>
</tr>
<tr>
<td>VCS1625Z** (Z Foil)</td>
<td>Y1607</td>
<td>Ultra high-precision surface-mount sense resistor DLA 08003</td>
<td>0.3Ω to 1Ω</td>
<td>±0.2%</td>
<td>±0.2 ppm/ºC</td>
<td>0.5W maximum current 5 A</td>
<td>±0.015%</td>
</tr>
<tr>
<td>VCS1625P</td>
<td>Y0856</td>
<td>High-precision Z Foil surface mount current sensing for high power</td>
<td>0.01Ω to 1Ω</td>
<td>±0.1%</td>
<td>±2 ppm/ºC</td>
<td>1W</td>
<td>±0.015%</td>
</tr>
<tr>
<td>VCS1625</td>
<td>Y0850</td>
<td>High-precision current sensing chip resistor (4-terminal) DLA 08003</td>
<td>0.01Ω to 1Ω</td>
<td>±0.1%</td>
<td>±2 ppm/ºC</td>
<td>0.5W maximum current 5 A</td>
<td>±0.015%</td>
</tr>
</tbody>
</table>
Power Current-Sensing Resistors

<table>
<thead>
<tr>
<th>Product</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, 25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSM2512, CSM3637</td>
<td>Y1487, Y1488</td>
<td>High-precision metal strip resistor</td>
<td>1 mΩ to 200 mΩ</td>
<td>±0.1%</td>
<td>±15 ppm/ºC maximum</td>
<td>Up to 3W</td>
<td>Maximum current 38A</td>
</tr>
<tr>
<td>CSM2512S, CSM3637S (Improved Stability)</td>
<td>Y4487</td>
<td>Ultra high-precision current-sense resistor</td>
<td>10 mΩ to 100 mΩ</td>
<td>±0.1%</td>
<td>±15 ppm/ºC maximum</td>
<td>1W</td>
<td>±0.05%</td>
</tr>
<tr>
<td></td>
<td>Y1472</td>
<td></td>
<td>10 mΩ to 100 mΩ</td>
<td>±0.2%</td>
<td>±15 ppm/ºC maximum</td>
<td>2W</td>
<td>±0.05%</td>
</tr>
<tr>
<td>CSM3637Z</td>
<td>Y1473</td>
<td>Ultra high-precision, current sensing, power surface-mount, metal strip resistor</td>
<td>3 mΩ to 50 mΩ</td>
<td>±0.1%</td>
<td>±5 ppm/ºC maximum</td>
<td>3W (3 mΩ to 10 mΩ)</td>
<td>±0.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2W (>10 mΩ to 50 mΩ)</td>
<td></td>
</tr>
<tr>
<td>CSM3637P</td>
<td>Y1474</td>
<td>High-precision, current sensing, power surface-mount, metal strip resistor with improved power</td>
<td>3 mΩ to 200 mΩ</td>
<td>±0.1%</td>
<td>±15 ppm/ºC</td>
<td>5W (3 mΩ to 10 mΩ)</td>
<td>±0.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4W (>10 mΩ to 50 mΩ)</td>
<td></td>
</tr>
<tr>
<td>Led221</td>
<td>Y2019</td>
<td>Ultra high-precision bulk metal foil resistors rating to 8W, TCR of ±0.2 ppm/ºC, and stability of ±0.005%</td>
<td>0.3Ω to 100Ω</td>
<td>±0.02%</td>
<td>±0.2 ppm/ºC</td>
<td>1W</td>
<td>±0.015%</td>
</tr>
<tr>
<td>VPR221SZ (Z Foil)</td>
<td>Y2123</td>
<td>Ultra high-precision surface-mount power current sense resistor</td>
<td>0.5Ω to 50ΩΩ</td>
<td>±0.01%</td>
<td></td>
<td>8W on heat sink 1.5W in free air</td>
<td>±0.005% at +25°C</td>
</tr>
<tr>
<td>VPR221S</td>
<td>Y1123</td>
<td>Precision foil power resistors, TO-220 configuration, 4-terminal connection</td>
<td>0.5Ω to 50Ω</td>
<td>±0.01%</td>
<td>±2 ppm/ºC</td>
<td>8W on heat sink 1.5W in free air</td>
<td>±0.005%</td>
</tr>
<tr>
<td>Product</td>
<td>Global Model</td>
<td>Product Description</td>
<td>Resistance Range(^*)</td>
<td>Best Tolerance</td>
<td>TCR ((-55ºC to +125ºC, 25ºC ref.)) Typical</td>
<td>Rated Power at +70ºC</td>
<td>Load Life Stability 2000 Hours, +70ºC Under Power</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>303119</td>
<td></td>
<td>VCS1625 configuration, screen/test flow in compliance with EEE-INST-002 and MIL-PRF-55342</td>
<td>0.01Ω to 10Ω</td>
<td>±0.5%</td>
<td>±2 ppm/ºC</td>
<td>0.5W maximum current 5 A</td>
<td>±0.05%</td>
</tr>
<tr>
<td>303119Z</td>
<td></td>
<td>VCS1625Z configuration, screen/test flow in compliance with EEE-INST-002 and MIL-PRF-55342</td>
<td>0.3Ω to 10Ω</td>
<td>±0.5%</td>
<td>±0.2 ppm/ºC</td>
<td>0.5W maximum current 5 A</td>
<td>±0.05%</td>
</tr>
<tr>
<td>303144</td>
<td></td>
<td>CSM2512 and CSM3637 with screen/test flow in compliance with EEE-INST-002, MIL-PRF-55342, and MIL-PRF-49465</td>
<td>3 mΩ to 200 mΩ</td>
<td>±0.5%</td>
<td>±20 ppm/ºC</td>
<td>1W maximum current 18 A</td>
<td>±1%</td>
</tr>
<tr>
<td>303145</td>
<td></td>
<td></td>
<td>2 mΩ to 200 mΩ</td>
<td>±0.5%</td>
<td>±20 ppm/ºC</td>
<td>3W maximum current 38 A</td>
<td>±1%</td>
</tr>
</tbody>
</table>
Power Current-Sensing Resistors

VISHAY FOIL RESISTORS
A VPG Brand

<table>
<thead>
<tr>
<th>Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +25ºC</th>
<th>Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole, Z Foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCS331Z, VCS332Z (Z Foil)</td>
<td>Y1481 Y1467</td>
<td>Ultra high-precision power current sense resistor</td>
<td>0.25Ω to 500Ω</td>
<td>±0.01%</td>
<td>±0.2</td>
<td>3W in free air</td>
<td>±0.01% in free air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10W on heat sink</td>
<td>±0.005% on heat sink</td>
</tr>
<tr>
<td>VHP4Z (Z Foil)</td>
<td>Y1479</td>
<td>Ultra high-precision hermetically-sealed power current sense resistor</td>
<td>0.25Ω to 500Ω</td>
<td>±0.01%</td>
<td>±0.2</td>
<td>3W in free air</td>
<td>±0.01% in free air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10W on heat sink</td>
<td>±0.005% on heat sink</td>
</tr>
<tr>
<td>VFP4Z (Z Foil)</td>
<td>Y1468</td>
<td>Ultra high-precision power current sense resistor</td>
<td>0.25Ω to 500Ω</td>
<td>±0.01%</td>
<td>±0.2</td>
<td>3W in free air</td>
<td>±0.01% in free air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10W on heat sink</td>
<td>±0.005% on heat sink</td>
</tr>
<tr>
<td>VPR247Z (Z Foil)</td>
<td>Y1480</td>
<td>Ultra high-precision hermetically-sealed power current sense resistor</td>
<td>0.25Ω to 500Ω</td>
<td>±0.01%</td>
<td>±0.2</td>
<td>3W in free air</td>
<td>±0.01% in free air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10W on heat sink</td>
<td>±0.005% on heat sink</td>
</tr>
<tr>
<td>VPR5Z</td>
<td>Y0118</td>
<td>Ultra high-precision current-sensing resistor (direct replacement for certain wirewounds)</td>
<td>5Ω to 100 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>5W</td>
<td>±0.01% at +70ºC</td>
</tr>
<tr>
<td>VPR7Z</td>
<td>Y0119</td>
<td>Ultra high-precision current-sensing resistor (direct replacement for certain wirewounds)</td>
<td>5Ω to 100 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/ºC</td>
<td>7W</td>
<td>±0.01% at +70ºC</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Power Current-Sensing Resistors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole, Z Foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCS232Z (Z Foil)</td>
<td>Y1608</td>
<td>Ultra high-precision power current sense resistor</td>
<td>0.25Ω to 500Ω</td>
<td>±0.02%</td>
<td>±0.2 ppm/°C</td>
<td>2W maximum current 3 A</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VPR221Z (Z Foil)</td>
<td>Y1690</td>
<td>Ultra high-precision power resistor in TO-220 configuration, 4-lead Kelvin connected device</td>
<td>0.5Ω to 500Ω</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>8W on heat sink 1.5W in free air</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Power Current-Sensing Resistors

Through-Hole

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VFP3, VFP4</td>
<td>Y0733, Y0734</td>
<td>Molded power high-precision current sensing resistors</td>
<td>0.05Ω to 80 kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/°C</td>
<td>3W in free air</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VFP3, VFP4, VPR247</td>
<td>Y0065, Y0066, Y0830</td>
<td>Hermetically-sealed and molded power high-precision current sensing resistors</td>
<td>0.05Ω to 80 kΩ</td>
<td>±0.01%</td>
<td>±2 ppm/°C</td>
<td>3W in free air</td>
<td>±0.01%</td>
</tr>
<tr>
<td>VPR5</td>
<td>Y0026</td>
<td>Current sensing resistor (direct replacement for certain wirewounds)</td>
<td>1Ω to 100 kΩ</td>
<td>±0.01%</td>
<td>±5 ppm/°C above 10Ω ±10 ppm/°C below 10Ω</td>
<td>5W</td>
<td>±0.01% at +70ºC</td>
</tr>
<tr>
<td>VPR7</td>
<td>Y0027</td>
<td>1Ω to 100 kΩ</td>
<td>±0.01%</td>
<td>±5 ppm/°C above 10Ω ±10 ppm/°C below 10Ω</td>
<td>7W</td>
<td>±0.01% at +70ºC</td>
<td></td>
</tr>
<tr>
<td>VCS101, VCS103, VCS401</td>
<td>Y0930, Y0940, Y0945</td>
<td>High-precision, low-value, current sense, shunt resistors, 4-lead Kelvin device</td>
<td>0.005Ω to 0.25Ω</td>
<td>±0.1%</td>
<td>±15 ppm/°C max. (0ºC to +60ºC)</td>
<td>To 1.5W in free air maximum current 15A</td>
<td>±0.5%</td>
</tr>
<tr>
<td>VCS201, VCS202</td>
<td>Y0955, Y0941</td>
<td>High-precision current sensing resistors, conformally coated</td>
<td>0.005Ω to 0.2Ω</td>
<td>±0.1%</td>
<td>±15 ppm/°C</td>
<td>To 2W in free air maximum current 15A</td>
<td>±0.02%</td>
</tr>
<tr>
<td>VCS232</td>
<td>Y0942</td>
<td>High-precision power current sense resistor</td>
<td>0.2Ω to 500Ω</td>
<td>±0.02%</td>
<td>±2 ppm/°C</td>
<td>To 2W in free air maximum current to 3A</td>
<td>±0.01%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.
Power Current-Sensing Resistors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-Hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCS301, VCS302</td>
<td>Y0959 Y0943</td>
<td>High-precision current sensing resistors (4-terminal)</td>
<td>0.005Ω to 0.25Ω</td>
<td>±0.5%</td>
<td>to ±3 ppm/°C max. (0°C to +60°C)</td>
<td>10W on heat sink 3W in free air maximum current 15A</td>
<td>±0.02%</td>
</tr>
<tr>
<td>VCS331, VCS332</td>
<td>Y0960 Y0944</td>
<td>Precision power current sensor</td>
<td>0.25Ω to 500Ω</td>
<td>±0.1%</td>
<td>to ±1 ppm/°C max. (0°C to +60°C)</td>
<td>10W on heat sink 3W in free air maximum current 5A</td>
<td>±0.01%</td>
</tr>
<tr>
<td>VPR221</td>
<td>Y0926</td>
<td>High-precision power resistors in TO-220 configuration, 4-lead Kelvin connected device</td>
<td>0.5Ω to 500Ω</td>
<td>±0.01%</td>
<td>±2 ppm/°C</td>
<td>8W on heat sink 1.5W in free air maximum current 3A</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models upon request.

New Generation of Power Current-Sensing Resistors

VFR has introduced a new generation of power current-sensing resistors that are available as custom-tailored products. For precise current measuring, these new resistors combine very low noise with an absolute TCR of <±0.2 ppm/°C (0°C to +60°C, or +20°C to +70°C), power TCR of <1 ppm/W, absolute tolerance of ±0.01%, and a load-life stability of ±0.005% for 2000 h in free air.

The resistors feature a power rating of 20 W in free air (60 W on heat sink) over a resistance range from 0.5 mΩ to 500 Ω.

The maximum current for resistance values of 10 mΩ and up is 22 A. Higher current values are available per customer requirements if needed.

Thermal resistance (element to heat sink) for the resistors is 2°C/W typical.
Dividers and Resistor Networks

Key Benefits
- Absolute Temperature Coefficient of Resistance (TCR):
 - ±0.2 ppm/°C (−55°C to +125°C, +25°C ref.) typical with Z Foil
 - TCR tracking: 0.1 ppm/°C
- Power coefficient of resistance (PCR) tracking, “ΔR due to self heating”: 5 ppm at rated power
- Resistance tolerance (absolute and match): ±0.005%
- Load-life ratio stability: <0.005% (50 ppm) 1 W and 70°C for 2000 h
- Thermal EMF: 0.05 μV/°C
- Electrostatic discharge (ESD) at least to 25 kV
- Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
- Current noise: 0.010 μVRMS/V of applied voltage (<−40 dB)
- Shelf-life stability: ±2 ppm typical (for hermetically sealed resistors) after at least six years
- VFR resistors are not restricted to standard values; specific “as required” values can be supplied at no extra cost or delivery (e.g. 1.2345 kΩ vs. 1 kΩ)
- Prototype quantities available in just five working days or sooner

Applications
- Military
- Aerospace and avionics
- Automotive
- Telecommunications
- Industrial
- Medical
- Test equipment
- Instrumentation
- High-precision amplifiers
- Laboratory
- Audio
- Electron beam applications
- Bridge networks
- Differential amplifiers
- Weigh scales
- Down-hole (high temperature)

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Voltage Dividers and Resistor Networks

Today, circuit designers are demanding voltage dividers that approach the ideal in performance: stable, high-speed, high-accuracy components that will operate with assured, predictable reliability for years in a variety of environments. VFR voltage dividers and resistor networks are meeting those demands and add the dimensions of convenience and economy to resistor needs. Our extensive experience relieves the circuit designer of the complicated, costly, and wasteful procedure of calculating the value of individual resistor components; ordering them; stabilizing, aging, or matching the units; and then assembling and testing their own resistor arrays. The VFR approach to dividers is simple and straightforward; our solution consists of any combination of resistors, and the end result is what matters. As a result, the only data we require from the designer is the overall electrical performance specifications, the environment operational, and the desired physical requirements.

Four fundamental factors determine how “ideal” a precision voltage divider will be:

1. Initial absolute resistance value, or how closely the absolute resistance value can be achieved
2. How precisely the value of individual resistors can be controlled
3. How precisely the end-of-life tolerance is maintained under a wide range of operating conditions and stress factors (temperature, humidity, load, ESD, etc.)
4. Fast response without ringing and fast thermal stabilization, and the ability of the resistor to react to rapid switching without adversely affecting the circuit function

Most resistor technologies compromise the theoretical ideal performance in one or more ways. For example, the winding of wire and the evaporation or sputtering of extremely thin metal each produce metallurgical changes in the resistance materials, and these noticeably deteriorate the electrical characteristics. Such changes are not predictable, and thus randomly alter performance parameters. The form factor of other units also introduces losses in high-frequency performance, limits power dissipation, and prohibits size reduction.

VFR networks are the only devices to have perfected these four factors to eliminate the inter-parameter compromises inherent in all other types of technologies. All important characteristics—tolerance, long-term stability, temperature coefficient, power coefficient, ESD, noise, capacitance, and inductance—are optimized, approaching the theoretical ideal in total performance.
Typical Resistor Network Applications*

Diagram 1. Inverting Amplifier

\[A = \frac{R_1}{R_2} \]

Diagram 2. Power Supply Voltage Filter

\[R_1 = R_2 \]

Diagram 3. Follower with Gain

\[A = \frac{R_1 + R_2}{R_2} \]

Diagram 4. Instrumentation AMP w/ Shield Driver

\[A = \frac{R_4}{R_3} \left(1 + \frac{R_1}{R_2} \right) \]

Diagram 5. Differential Input Amplifier

Diagram 6. Current Driver

\[I_{\text{out}} = \frac{V_{\text{in}}}{R_3 + R_4 + R_5} \]

For \(R_3 + R_4 + R_5 \leq R_1 + R_2 \)

\[I_{\text{out}} = \frac{V_{\text{in}}}{R_5} \]

\[I_{\text{out}} = \frac{V_{\text{in}}}{R_3 + R_4 + R_5} \]

Diagram 7. Differential input instrumentation amplifier

Diagram 8. High common mode voltage rejection unity gain differential amplifier

* These diagrams are supplied to illustrate typical resistor network applications. VFR assumes no responsibility for specific use or performance.
Voltage Dividers and Resistor Networks

<table>
<thead>
<tr>
<th>Model and Product Description</th>
<th>Global Model</th>
<th>Resistance Range</th>
<th>Voltage Dividers</th>
<th>TCR (–55°C to +125°C)</th>
<th>Rated Power at +70°C</th>
<th>Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSMZ (Z Foil) Ultra high-precision, surface-mount, molded voltage divider</td>
<td>Y4485</td>
<td>Any value 1000 to 10 kΩ per resistor</td>
<td>±0.02%</td>
<td>Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C</td>
<td>Entire package 0.1W Each resistor 0.05W at +70°C</td>
<td>2000 Hours, +70°C Under Power-Typical</td>
</tr>
<tr>
<td>DSM High-precision, surface-mount, molded voltage divider</td>
<td>Y1485</td>
<td>Any value 1000 to 12 kΩ per resistor</td>
<td>±0.02%</td>
<td>Absolute: ±2 ppm/°C Tracking: ±0.5 ppm/°C</td>
<td>Entire package 0.1W Each resistor 0.05W at +70°C</td>
<td>2000 Hours, +70°C Under Power-Typical</td>
</tr>
<tr>
<td>SMNZ (Z Foil) Ultra high-precision, surface-mount, 4-resistor network dual in-line, molded package, 50 mil pitch</td>
<td>Y1747</td>
<td>Any value 1000 to 10 kΩ per resistor</td>
<td>±0.02%</td>
<td>Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C</td>
<td>Entire package 0.4W Each resistor 0.1W at +70°C</td>
<td>2000 Hours, +70°C Under Power-Typical</td>
</tr>
<tr>
<td>SMN High-precision, surface-mount 4-resistor network dual in-line, molded package, 50 mil pitch</td>
<td>Y1365</td>
<td>Any value 1000 to 10 kΩ per resistor</td>
<td>±0.02%</td>
<td>Absolute: ±2 ppm/°C Tracking: ±0.5 ppm/°C</td>
<td>Entire package 0.4W Each resistor 0.1W at +70°C</td>
<td>2000 Hours, +70°C Under Power-Typical</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models.
Voltage Dividers and Resistor Networks

<table>
<thead>
<tr>
<th>Model and Product Description</th>
<th>Global Model</th>
<th>Resistance Range</th>
<th>Best Resistance Tolerance</th>
<th>TCR (-55°C to +125°C +25°C ref.) Typical</th>
<th>Rated Power at +70°C</th>
<th>Load Life Stability 2000 Hours, +70°C Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMNH1, 2, ** High-precision, hermetically-sealed, 4-resistors, surface-mount resistor network</td>
<td>Y1521 Y1522</td>
<td>Any value 5Ω to 33 kΩ per resistor</td>
<td>Absolute: ±0.005%</td>
<td>Tracking: ±0.005%</td>
<td>0.4W</td>
<td>0.005%</td>
</tr>
<tr>
<td>SMNH1</td>
<td></td>
<td></td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMNH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFCD1505 (Z Foil) Ultra high-precision flip-chip, voltage divider</td>
<td>Y1685</td>
<td>10Ω to 10 kΩ</td>
<td>±0.01%</td>
<td>Tracking: 0.1 ppm/°C</td>
<td>0.1W at +70°C, for the entire package divided proportionally between the two elements</td>
<td>Absolute: 0.01% Ratio: 0.005%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Shelf life stability: 2 ppm.

** Available with Z Foil Technology.

Tighter performances and higher or lower value resistances are available for all models.
Voltage Dividers and Resistor Networks

Model and Product Description

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Resistance Range</th>
<th>Best Resistance Tolerance</th>
<th>TCR (-55°C to +125°C +25°C ref.) Typical</th>
<th>Rated Power at +70°C</th>
<th>Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Dividers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **3001442Z (Z Foil)**
 Ultra high-precision, small package molded voltage divider

 - **Model**: Y1691
 - **Resistance Range**: Any value from 100Ω to 20 kΩ per resistor
 - **Best Resistance Tolerance**: ±0.005% 0.005%
 - **TCR**: Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C
 - **Rated Power at +70°C**: 0.2W at +70°C, for the entire package divided proportionally between the two elements
 - **Load Life Stability**: 2000 Hours, +70°C Under Power-Typical

- **300144* High-precision, small package molded voltage divider**

 - **Model**: Y0006
 - **Resistance Range**: Any value from 100Ω to 20 kΩ per resistor
 - **Best Resistance Tolerance**: ±0.005% 0.005%
 - **TCR**: Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C
 - **Rated Power at +70°C**: 0.2W at +85°C, for the entire package divided proportionally between the two elements
 - **Load Life Stability**: ±0.005%

- **300145Z (Z Foil)**
 Ultra high-precision, small package molded pair of voltage dividers

 - **Model**: Y1735
 - **Resistance Range**: Any value from 100Ω to 20 kΩ per resistor
 - **Best Resistance Tolerance**: ±0.005% 0.005%
 - **TCR**: Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C
 - **Rated Power at +70°C**: 0.2W at +70°C, for the entire package divided proportionally between the two elements
 - **Load Life Stability**: ±0.005%

- **300145**
 High-precision, small package molded pair of voltage dividers

 - **Model**: Y0035
 - **Resistance Range**: Any value from 100Ω to 20 kΩ per resistor
 - **Best Resistance Tolerance**: ±0.005% 0.005%
 - **TCR**: Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C
 - **Rated Power at +85°C**: For the entire package divided proportionally between the two elements
 - **Load Life Stability**: ±0.005%

- **300190Z-9Z, 300210Z-12Z (Z Foil)**
 Ultra high-precision, molded resistor networks 2R, 3R, 4R, voltage dividers, bridge circuits, attenuators

 - **Model**: Refer to datasheet
 - **Resistance Range**: Any value from 1Ω to 100 kΩ per resistor
 - **Best Resistance Tolerance**: ±0.005% 0.01%
 - **TCR**: Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C 0.6W at +70°C 0.3W at +125°C
 - **Load Life Stability**: ±0.005%

* 300144 uncalibrated resistors are available.
Tighter performances and higher or lower value resistances are available for all models.
Voltage Dividers and Resistor Networks

Voltage Dividers

<table>
<thead>
<tr>
<th>Model and Product Description</th>
<th>Global Model</th>
<th>Resistance Range</th>
<th>Best Resistance Tolerance</th>
<th>TCR (–55°C to +125°C) Typical</th>
<th>Rated Power at +70°C</th>
<th>Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>300190-9, 300210-12 High-precision, molded resistor networks 2R, 3R, 4R, voltage dividers, bridge circuits, attenuators Refer to datasheet</td>
<td>Any value from 1Ω to 150 kΩ per resistor</td>
<td>±0.005%</td>
<td>0.005%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C</td>
<td>0.5W per resistor at +70°C 0.25W per resistor at +125°C</td>
<td>±0.001%</td>
</tr>
<tr>
<td>VSR144 Industrial molded voltage divider</td>
<td>Any value 1000 to 20 kΩ</td>
<td>±0.05%</td>
<td>0.02%</td>
<td>Absolute: ±4 ppm/°C Tracking: 1.5 ppm/°C</td>
<td>0.2W at +70°C, for the entire package divided proportionally between the two elements</td>
<td>±0.001%</td>
</tr>
<tr>
<td>VHD144* ** Hermetic version of the molded divider 300144</td>
<td>Any value from 100Ω to 20 kΩ per side</td>
<td>±0.005%</td>
<td>0.005%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C</td>
<td>0.2W</td>
<td>±0.001%</td>
</tr>
<tr>
<td>VHD200* ** Hermetically-sealed, oil-filled voltage divider, ultimate ratio match and TCR tracking</td>
<td>Any value from 100Ω to 20 kΩ per side</td>
<td>±0.005%</td>
<td>0.001%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.1 ppm/°C</td>
<td>0.1W</td>
<td>±0.001%</td>
</tr>
</tbody>
</table>

* Shelf life stability: 2 ppm
** Available with Z Foil Technology.
Tighter performances and higher or lower value resistances are available for all models.
Voltage Dividers and Resistor Networks

<table>
<thead>
<tr>
<th>Model and Product Description</th>
<th>Global Model</th>
<th>Resistance Range</th>
<th>Best Resistance Tolerance</th>
<th>TCR (–55ºC to +125ºC +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability 2000 Hours, +70ºC Under Power-Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Dividers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSH144Z (Z Foil) Ultra high-precision, low profile, conformally coated voltage divider resistor</td>
<td>Y1680</td>
<td>Any value from 1000Ω to 20 kΩ per resistor</td>
<td>0.01% 0.01%</td>
<td>Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C typical</td>
<td>0.2W at +70ºC, for the entire package divided proportionally between the two elements</td>
<td>±0.01%</td>
</tr>
<tr>
<td>VSH144 Low profile, conformally coated, high-precision voltage divider resistor</td>
<td>Y1767</td>
<td>Any value from 1000Ω to 20 kΩ per resistor</td>
<td>0.01% 0.01%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C typical</td>
<td>0.2W at +70ºC, for the entire package divided proportionally between the two elements</td>
<td>±0.01%</td>
</tr>
<tr>
<td>VFD244Z (Z Foil) Ultra high-precision voltage divider resistor</td>
<td>Y0115</td>
<td>Any value from 1Ω to 100 kΩ per resistor</td>
<td>0.005% 0.005%</td>
<td>Absolute: ±0.2 ppm/°C Tracking: 0.1 ppm/°C typical</td>
<td>1W at +70ºC, for the entire package divided proportionally between the two elements</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VFD244 High-precision voltage divider resistor</td>
<td>Y0114</td>
<td>Any value from 1Ω to 150 kΩ per resistor</td>
<td>0.005% 0.005%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C typical</td>
<td>1W at +70ºC, for the entire package divided proportionally between the two elements</td>
<td>±0.005%</td>
</tr>
</tbody>
</table>

Tighter performances and higher or lower value resistances are available for all models.
Hermetically Sealed Resistors

Key Benefits
- Essentially zero TCR
- Resistance tolerance: ±0.001%
- Power coefficient of resistance (PCR) tracking, “ΔR due to self heating”: 5 ppm at rated power
- Load-life stability: to ±0.005% +70°C, 2000 h at rated power
- Resistance range: 1Ω to 3.3 MΩ
- Available with four-terminal (Kelvin) connections
- Shelf-life stability: 2 ppm after at least six years
- Oil-filled for ultra hermetically (also available as oil-free)
- High degree of hermeticity: <10^-7 atmospheric cc/s
- Non-inductive, non-capacitive design
- Prototype quantities available in just five working days or sooner
- Certification to NIST standards available
- Available with laboratory- and metrology-level precision and long-term stability with additional in-house oriented processes, such as:
 - Special TCR plotting
 - Mounted chip stabilization
 - Thermal shock and bake prior to sealing
 - Combined thermal shock and power conditioning on finished product
 - Thermal and power conditioning
- Foil resistors are not restricted to standard values; specific “as required” values can be supplied at no extra cost or delivery (e.g., 1.2345 kΩ vs. 1 kΩ)
- Electrostatic discharge (ESD) at least to 25 kV
- Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
- Current noise: 0.010 μVRMS/V of applied voltage (<–40 dB)

Applications
- Metrology
- Military
- Aerospace
- Medical
- Test equipment
- Instrumentation amplifiers
- Laboratory
- Industrial
- Measurements systems

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Hermetically Sealed Resistors

VFR hermetically sealed resistors eliminate the ingress of both oxygen, which degrades resistors over long periods, and moisture, which degrades resistors more quickly. A series of radial- and axial-configured resistors are placed in an enclosure impervious to gas transmission. Some of the models are simply standard through-hole products that are encapsulated; ie. VHZ555 is the hermetic version of Z555.

The degree of hermeticity is usually determined by exposure to pressurized helium and then measuring the rate at which the helium escapes. VFR hermetically sealed resistors offer a remarkably low degree of hermeticity at less than 1x10^-7 cc per second at normal atmospheric pressure.

Different forms of seal designs can be implemented:

- Oil-filled seals — the oil acts as a thermal conductor, thus eliminating long-term degradation of the elements of unsealed resistors, while at the same time allowing the device to accept short periods of overload without degradation
- Rubber fill between the metal housing and resistance element acts both as a mechanical damper and thermal transfer path
- Glass-to-metal seal enclosures employing Kovar eyelets allow the OFHC solder-plated copper leads to pass through the enclosure to minimize the thermal EMF from the lead junctions

Other resistor technologies tend to face several problems with the effects of oxygen and moisture. Thin film technology, for example, can easily be damaged permanently by moisture. Condensation of microscopic quantities of water vapor on the surface of the NiCr thin film resistive element results in the dissolution of ionic contaminations on the surface and the formation of electrolyte solution. Since all plastics and all epoxies are hydroscopic, thermal cycling causes the resistor to “breathe in” water vapor that picks up encapsulation contaminates, which are then condensed inside the package. Under low-power DC voltage, the ionic etching of thin NiCr films can cause rapid and significant resistance changes in a few minutes, completely destroying the resistor (open circuit) within a few hours. This is why any damage to the humidity protection [coating or package] in thin film resistors inevitably results in its failure.

Bulk Metal resistive elements in VFR resistors are one hundred times thicker than thin film resistive elements and therefore are much less vulnerable to the etching process. Hermetic versions of these resistors then completely eliminate any moisture influence whatsoever.
<table>
<thead>
<tr>
<th>Product</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability, 2000 Hours +70ºC Under Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH1022Z</td>
<td>Y5077</td>
<td>Hermetic version of the molded Z201 and Z555 devices</td>
<td>10Ω to 100 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/ºC Available with low window TCR over the required temp. range</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VH5555Z</td>
<td>Y1635</td>
<td></td>
<td>4.99Ω to 121 kΩ</td>
<td>±0.005%</td>
<td>±0.2 ppm/ºC</td>
<td>0.6W</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VHP2022Z</td>
<td>Y1748 Y6071</td>
<td></td>
<td>5Ω to 100 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>0.3W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA412Z</td>
<td>Y1749</td>
<td></td>
<td>5Ω to 200 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>0.5W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA414Z</td>
<td>Y1751</td>
<td></td>
<td>5Ω to 300 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>0.75W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA512Z**</td>
<td>Y1750</td>
<td>Oil-filled hermetically sealed ultra high-precision resistors [4-leading terminal (Kelvin connection) available on special request]</td>
<td>5Ω to 400 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>1.0W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-4Z**</td>
<td>Y1752</td>
<td></td>
<td>5Ω to 500 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>1.25W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-5Z**</td>
<td>Y1753</td>
<td></td>
<td>5Ω to 600 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>1.5W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA518-7Z**</td>
<td>Y1755</td>
<td></td>
<td>5Ω to 700 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>1.75W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA518-8Z**</td>
<td>Y1756</td>
<td></td>
<td>5Ω to 800 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>2.0W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA518-9Z**</td>
<td>Y1757</td>
<td></td>
<td>5Ω to 900 kΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>2.25W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA518-10Z**</td>
<td>Y1758</td>
<td></td>
<td>5Ω to 1.0 MΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>2.5W</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA518-11Z**</td>
<td>Y1759</td>
<td></td>
<td>5Ω to 1.1 MΩ</td>
<td>±0.001%</td>
<td>±0.2 ppm/ºC</td>
<td>2.5W</td>
<td>±0.002% at +25ºC</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models.

** Available in 4-lead terminal: VHA512(Z) please use 302073(Z), VHA516(Z) please use 302074(Z), VHA518(Z) please use 302075(Z).
<table>
<thead>
<tr>
<th>Product</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (-55ºC to +125ºC, +25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
<th>Load Life Stability, 2000 Hours +70ºC Under Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS102</td>
<td>Y0077 Y0088</td>
<td>Hermetic version of the molded S102C, S102K, and S555 devices</td>
<td>1Ω to 150 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.6W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VH102K</td>
<td>Y5787 Y0787</td>
<td></td>
<td>1Ω to 100 kΩ</td>
<td>±0.005%</td>
<td>±1 ppm/°C</td>
<td>0.3W at +125ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VHS555</td>
<td>Y0087</td>
<td></td>
<td>1Ω to 150 kΩ</td>
<td>±0.005%</td>
<td>±5 ppm/°C maximum</td>
<td></td>
<td>±0.005%</td>
</tr>
<tr>
<td>VHP100</td>
<td>Y0078 Y5078</td>
<td>Ultra high-precision resistor with very narrow TCR window</td>
<td>10Ω to 150 kΩ</td>
<td>±0.005%</td>
<td><60 ppm window (-55ºC to +125ºC)</td>
<td>0.3W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VHP101</td>
<td>Y4078 Y6078</td>
<td></td>
<td>100Ω to 150 kΩ</td>
<td>±0.005%</td>
<td><10 ppm window (+15ºC to +45 ºC)</td>
<td>0.3W at +70ºC</td>
<td>±0.005%</td>
</tr>
<tr>
<td>VHP202</td>
<td>Y0024 Y0019</td>
<td></td>
<td>5Ω to 150 kΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>0.3W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA412</td>
<td>Y0025</td>
<td>Oil-filled hermetically sealed high-precision resistors (4-lead terminal (Kelvin connection) available on special request)</td>
<td>5Ω to 335 kΩ</td>
<td>±0.002%</td>
<td>±2 ppm/°C</td>
<td>0.5W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA414</td>
<td>Y0023</td>
<td></td>
<td>5Ω to 500 kΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>0.75W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA512**</td>
<td>Y0104</td>
<td></td>
<td>5Ω to 668 kΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>1.0W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-4**</td>
<td>Y0105</td>
<td></td>
<td>5Ω to 835 kΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>1.25W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-5**</td>
<td>Y0106</td>
<td></td>
<td>5Ω to 1 MΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>1.5W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-6**</td>
<td>Y0107</td>
<td></td>
<td>5Ω to 1.17 MΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>1.75W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-7**</td>
<td>Y0108</td>
<td></td>
<td>5Ω to 1.34 MΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>2.0W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-8**</td>
<td>Y0109</td>
<td></td>
<td>5Ω to 1.5 MΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>2.25W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-9**</td>
<td>Y0110</td>
<td></td>
<td>5Ω to 1.67 MΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>2.5W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-10**</td>
<td>Y0111</td>
<td></td>
<td>5Ω to 1.84 MΩ</td>
<td>±0.001%</td>
<td>±2 ppm/°C</td>
<td>2.5W at +70ºC</td>
<td>±0.002% at +25ºC</td>
</tr>
<tr>
<td>VHA516-11**</td>
<td>Y0065 Y0066 Y0830</td>
<td>Hermetically-sealed and molded power high-precision current sensing resistors</td>
<td>0.05Ω to 80 kΩ</td>
<td>±0.01%</td>
<td></td>
<td>3W in free air 10W on heat sink</td>
<td>±0.01% at +25ºC</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models.
Hermetically Sealed Resistors

<table>
<thead>
<tr>
<th>Model and Product Description</th>
<th>Global Model</th>
<th>Resistance Range</th>
<th>Resistance Ratio Available</th>
<th>Best Resistance Tolerance</th>
<th>TCR (<–55°C to +125°C +25°C ref.) Typical</th>
<th>Rated Power at +70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermetic Voltage Divider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMNH1, 2*, **</td>
<td>Y1521, Y1522</td>
<td>Any value 5Ω to 33 kΩ per resistor</td>
<td>Any ohmic value ratio within resistance range</td>
<td>±0.005%</td>
<td>0.005%</td>
<td>Absolute: ±2 ppm/°C Tracking: ±0.5 ppm/°C</td>
</tr>
<tr>
<td>VHD144*, **</td>
<td>Y0076</td>
<td>Any value from 100Ω to 20 kΩ per side</td>
<td>Any ohmic value ratio within resistance range</td>
<td>±0.005%</td>
<td>0.005%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.5 ppm/°C</td>
</tr>
<tr>
<td>VHD200*, **</td>
<td>Y5076</td>
<td>Any value from 100Ω to 20 kΩ per side</td>
<td>Any ohmic value ratio within resistance range</td>
<td>±0.005%</td>
<td>0.001%</td>
<td>Absolute: ±2 ppm/°C Tracking: 0.1 ppm/°C</td>
</tr>
<tr>
<td>FSR</td>
<td>Y4028 New</td>
<td>1Ω to 150 kΩ</td>
<td>Any ohmic value ratio within resistance range</td>
<td>Absolute: ±0.005%</td>
<td>±0.3 ppm/°C (+15°C to +45°C +25°C ref.)</td>
<td>±0.75W at 25°C</td>
</tr>
</tbody>
</table>

* Shelf-life stability: 2 ppm.
** Available with Z Foil Technology.
Tighter performances and higher or lower value resistances are available for all models.
Trimming Potentiometers

Key Benefits

- Absolute temperature coefficient of resistance (TCR): ±5 ppm/°C (–55°C to +125°C, +25°C ref.)
- TCR through the wiper: ±25 ppm/°C
- Settability: down to ±0.005%
- Setting stability: to 0.1%
- Load-life stability: 0.1% typical ΔR, 1.0% maximum
- ΔR under full rated power at +85°C for 10 000 h
- Tap test: 0.05%
- All trimmers undergo noise and linearity tests during
 the standard production process
- O-ring prevents ingress of fluids during any board cleaning operation
- Prototype quantities available in just five working days or sooner
- A smooth and unidirectional resistance with lead screw adjustment
- Power rating: 0.25 W at +85°C
- Electrostatic discharge (ESD) at least to 25 kV

Applications

- High-precision instrumentation
- Test equipment and automatic test equipment
- Laboratory and industrial
- Audio equipment
- Military

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Trimmers

Trimmers are mechanically driven, variable resistors. A wiper is moved across the resistance element, picking off an intermediate voltage in the potentiometer mode, or adding resistance in the rheostat mode. Its inherent mechanical aspects have caused some users to avoid designing with trimmers and are of special concern when selecting trimmers for precision applications.

However, with VFR trimmers there is a smooth, unidirectional, and infinite resolution adjustment for lower ohmic values, and somewhat lesser resolution for values 5 kΩ and above. Foil also achieves a very low TCR end-to-end, and the TCR though the wiper can be specified (and is also relatively low). Further, the unique element resistive pattern design minimizes the capacitive and inductive reactance levels.

The trimmers’ advanced virtually backlash-free adjustment mechanism makes them easy to set quickly and accurately, while firmly maintaining their value. The contact resistance variation is now reduced through the use of a multi-fingered wiper on a planer surface — a comparison between the competing technologies shows these capabilities in the figure below.

Four key points:

1. Foil trimmers are preferred for precise adjustment
2. Foil trimmers are preferred when the adjustment must be stable with mechanical vibration and temperature excursion
3. Foil trimmers introduce the least noise
4. The applied O-ring seal is the surest protection against contaminants

All in all, VFR trimmers have become the devices of choice for precise adjustment.
Trimming Potentiometers

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55°C to +150°C +25°C ref.)</th>
<th>Rated Power</th>
<th>Termination Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1240</td>
<td>Y4053 Y5053 Y0053</td>
<td>Precision trimming potentiometers, ¼ inch square, RJ26 style DLA 87126, multi turn</td>
<td>5Ω to 10 kΩ</td>
<td>±5%</td>
<td>±10 ppm/°C</td>
<td>0.25W at +85°C</td>
<td>W-edge mount, top adjust X-edge mount, side adjust P-horizontal mount, side adjust</td>
</tr>
<tr>
<td>1260</td>
<td>Y0069 Y4069</td>
<td>Precision trimming potentiometers, ⅛ inch square, RJ24 style, multi turn</td>
<td>5Ω to 10 kΩ</td>
<td>±5%</td>
<td>±10 ppm/°C</td>
<td>0.25W at +85°C</td>
<td>W-edge mount, top adjust X-edge mount, side adjust</td>
</tr>
<tr>
<td>1202</td>
<td>Y0051-P Y6050-PB Y5051-Y Y7050-YB Y5050-L Y0050-LB</td>
<td>Precision trimming potentiometers, 1¼ inch rectilinear, RJ12 style, multi turn</td>
<td>2Ω to 20 kΩ</td>
<td>±5%</td>
<td>±10 ppm/°C</td>
<td>0.5W at +85°C</td>
<td>P-in line pins Y-staggered pins L-flexible leads B-panel mounted</td>
</tr>
<tr>
<td>1242</td>
<td>Y0057 Y4057</td>
<td>Precision trimming potentiometers QPL, ¼ inch square, qualified to MIL-PRF-22097, Char. F, RJ26, multi turn</td>
<td>500Ω to 5 kΩ</td>
<td>±10%</td>
<td>±10 ppm/°C</td>
<td>0.25W at +85°C</td>
<td>W-edge mount, top adjust X-edge mount, side adjust</td>
</tr>
<tr>
<td>1280G</td>
<td>Y0056</td>
<td>Precision trimming potentiometers, ¼ inch rectilinear, multi turn</td>
<td>10Ω to 20 kΩ</td>
<td>±10%</td>
<td>±15 ppm/°C</td>
<td>0.75W at +25°C</td>
<td>Edge mount, side adjust</td>
</tr>
<tr>
<td>1285G</td>
<td>Y0059</td>
<td>Precision trimming potentiometers, ¼ inch rectilinear, multi turn</td>
<td>10Ω to 20 kΩ</td>
<td>±5%</td>
<td>±5 ppm/°C</td>
<td>0.75W at +25°C</td>
<td>Edge mount, side adjust</td>
</tr>
</tbody>
</table>

*Tighter performances and higher or lower value resistances are available for all models.
Hybrid Chips and Custom-Designed Hermetically Sealed Networks (PRND)

Key Benefits

- Temperature coefficient of resistance (TCR):
 - 0.05 ppm/°C typical (0°C to +60°C)
 - 0.2 ppm/°C typical (-55°C to +125°C, +25°C ref.)
- TCR tracking: 0.5 ppm/°C
- Flexible schematic designs
- Resistance tolerance:
 - Absolute ±0.005%
 - Match 0.002%
- Resistance values: 5 Ω to 80 kΩ
- Load-life stability: ΔR = 0.01%, ΔRatio = 0.005% at +25°C for 2000 hr at rated power
- Shelf-life stability per resistor: 0.0002% (2 ppm)
- High degree of hermeticity: <5 x 10^-7 cc/sec
- Rated power per package up to 2.4 W

- Resistance tolerance:
 - Absolute: to ± 0.01%
 - Match: to 0.01%
- Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
- Current noise: 0.010 μV RMS/V of applied voltage (<–40 dB)
- VFR resistors are not restricted to standard values; specific “as required” values can be supplied at no extra cost or delivery (e.g. 1.2345 kΩ vs. 1 kΩ)
- Electrostatic discharge (ESD) at least to 25 kV
- Available for high-temperature applications
- No engineering charges, no minimum quantities
- Quick prototype delivery
- Custom-designed chip arrays are available

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Hybrid Chips and Custom-Designed Hermetically Sealed Networks (PRND)

Customers have the opportunity to order hybrid chips and custom-designed hermetically sealed networks for implementation into their design projects.

Hybrid Chips

Hybrid chips with gold-plated pads enable gold-wire bonding between the components in circuits. The use of gold-wire bonding maintains the characteristics necessary for the chip to have a low thermal EMF, since using the same elements and materials reduces potential differences that can cause an EMF. The customer has wide flexibility in determining the implementation and selection of chips. Chips are available in a variety of sizes, trimming specifications, and foil technology — including the latest Z Foil hybrid chips.

Untrimmed chips can be ordered, allowing user trimming to be performed either before or after bonding — using standard epoxies—onto the hybrid circuit substrate using standard laser, air abraid, or manual adjustment techniques. The VFR precision trimming system allows for adjustment to precise resistance values without concern over mechanical override and control problems encountered in laser or air abraid trimming of solid geometry resistance patterns.

This ability to trim resistor chips to tolerance levels never before available to hybrid manufacturers gives project managers the ability to increase the value of their hybrid services and retain more profit within the facility. Now, instead of buying precision resistors in separate packages or modules (which require additional PC board real estate) and integrating them into a system, project managers can utilize VFR resistor chips or matched sets to manufacture the entire hybrid circuit in-house. This eliminates the need to “pin-out” for precision resistor requirements because the precision resistors are inside, as part of the hybrid microcircuit design.

PRNDs

Precision resistor network devices (PRNDs) are custom-designed, hermetically sealed networks that can be configured to any circuit schematic and specifications the customer desires. Multiple resistors are deliberately arranged within the devices and connected by gold-wire bonding. Our application engineers are experienced in designing networks that operate properly and avoid potential problems such as high heat concentrations or elongated gold-wires, which can reduce the network’s reliability. To have your PRND designed, please send your desired schematics and specifications to our Application Engineering department.

NOTE:
Usable area is represented by the dotted lines — a rectangle 0.150” x 0.200”. Illustrations not to scale. Chips shown undersize for clarity. Drawing view is from the top looking down into package.
Hybrid Chips and Custom-Designed Hermetically Sealed Networks (PRND)

<table>
<thead>
<tr>
<th>Hybrid Chip Type</th>
<th>Global Model</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (–55ºC to +125ºC, 25ºC ref.) Typical</th>
<th>Rated Power at +70ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5x5PT (0.050” x 0.050”)</td>
<td>Y4045</td>
<td>Hybrid chips (gold-plated termination pads)</td>
<td>5Ω to 10 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.05W</td>
</tr>
<tr>
<td>V15x5PT (0.150” x 0.050”)</td>
<td>Y4047</td>
<td>Hybrid chips (gold-plated termination pads)</td>
<td>5Ω to 33 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.1W</td>
</tr>
<tr>
<td>V15x10PT (0.150” x 0.100”)</td>
<td>Y4475</td>
<td>Hybrid chips (gold-plated termination pads)</td>
<td>33 kΩ to 80 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.15W</td>
</tr>
<tr>
<td>V5X5PU</td>
<td>Y4044</td>
<td>Untrimmed gold wire-bondable hybrid chips (gold-plated termination pads)</td>
<td>Good for 5Ω to 10 kΩ</td>
<td></td>
<td></td>
<td>0.05W</td>
</tr>
<tr>
<td>V15X5PU</td>
<td>Y4046</td>
<td>Untrimmed gold wire-bondable hybrid chips (gold-plated termination pads)</td>
<td>Good for 5Ω to 33 kΩ</td>
<td>±0.005%</td>
<td>±2 ppm/°C</td>
<td>0.1W</td>
</tr>
<tr>
<td>V15X10PU</td>
<td>Y4471</td>
<td>Untrimmed gold wire-bondable hybrid chips (gold-plated termination pads)</td>
<td>Good for 33Ω to 80 kΩ</td>
<td></td>
<td></td>
<td>0.15W</td>
</tr>
<tr>
<td>Z Foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5X5ZT</td>
<td>Y4033</td>
<td>Ultra high-precision hybrid chips (gold-plated termination pads)</td>
<td>50Ω to 5 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>0.05W</td>
</tr>
<tr>
<td>V15X5ZT</td>
<td>Y4034</td>
<td>Ultra high-precision hybrid chips (gold-plated termination pads)</td>
<td>50Ω to 30 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>0.1W</td>
</tr>
<tr>
<td>V5X5ZU</td>
<td>Y4036</td>
<td>Ultra high-precision hybrid chips (gold-plated termination pads)</td>
<td>Good for 50Ω to 5 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>0.05W</td>
</tr>
<tr>
<td>V15X5ZU</td>
<td>Y4037</td>
<td>Ultra high-precision hybrid chips (gold-plated termination pads)</td>
<td>Good for 50Ω to 30 kΩ</td>
<td>±0.01%</td>
<td>±0.2 ppm/°C</td>
<td>0.1W</td>
</tr>
</tbody>
</table>

* Tighter performances and higher or lower value resistances are available for all models. Hybrid chips are also available for high temperature applications. For more information, please refer to HTH series on page 24.
Hybrid Chips and Custom-Designed Hermetically Sealed Networks (PRND)

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (-55 °C to +125 °C, +25 °C ref.) Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO: 1401, 1403, 1413, 1417, 1419, 1421, 1422</td>
<td>Glass to metal seal headers</td>
<td>5Ω to 80 kΩ per resistor</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio match: 0.002%</td>
<td>Tracking: 0.5 ppm/°C</td>
</tr>
<tr>
<td>DIP: 1442, 1445, 1446, 1457, 1460</td>
<td>Ceramic dual-in-line package</td>
<td>5Ω to 80 kΩ per resistor</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio match: 0.002%</td>
<td>Tracking: 0.5 ppm/°C</td>
</tr>
<tr>
<td>1445Q (7 resistors)</td>
<td>QPL Networks qualified to MIL-PRF 83401</td>
<td>100Ω to 10 kΩ</td>
<td>Absolute: ±0.1%</td>
<td>Absolute: ±50 ppm/°C</td>
</tr>
<tr>
<td>1446Q (8 resistors)</td>
<td>Characteristic “C” Schematic A</td>
<td></td>
<td>Ratio match: 0.1%</td>
<td>Tracking: 5 ppm/°C</td>
</tr>
<tr>
<td>VSM40, 42, 45, 46 (8, 14 and 16 pin)</td>
<td>Hermetic resistor networks in gull wing configuration</td>
<td>5Ω to 80 kΩ</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Match: ±0.002%</td>
<td>Tracking: ±0.5 ppm/°C</td>
</tr>
<tr>
<td>VSM85, 86, 87, 88, 89</td>
<td>Hermetic resistor networks in leadless chip carrier (LCC) configuration</td>
<td>5Ω to 80 kΩ</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Match: ±0.002%</td>
<td>Tracking: ±0.5 ppm/°C</td>
</tr>
<tr>
<td>VSM57</td>
<td></td>
<td>5Ω to 80 kΩ</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Match: ±0.002%</td>
<td>Tracking: ±0.5 ppm/°C</td>
</tr>
</tbody>
</table>

Networks built to customer requirements. Send schematics and electrical specification to Application Engineering Dept. at foil@wpbg.com.

* Tighter performances and higher or lower value resistances are available for all models.
Hybrid Chips and Custom-Designed Hermetically Sealed Networks (PRND)

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Product Description</th>
<th>Resistance Range*</th>
<th>Best Tolerance</th>
<th>TCR (-55 °C to +125 °C, +25 °C ref.) Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1476</td>
<td>Hermetic resistor networks in flatpacks configuration</td>
<td>5Ω to 80 kΩ</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Match: ±0.002%</td>
<td>Tracking: ±0.5 ppm/°C</td>
</tr>
<tr>
<td>1491</td>
<td></td>
<td>5Ω to 80 kΩ</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Match: ±0.002%</td>
<td>Tracking: ±0.5 ppm/°C</td>
</tr>
<tr>
<td>PRND EEE</td>
<td>Custom hermetically sealed precision resistor network devices (PRND) with screen/test flow in compliance with EEE-INST-002 and MIL-PRF-83401</td>
<td>5 to 60 KΩ</td>
<td>Absolute: ±0.005%</td>
<td>Absolute: ±2 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio match: 0.002%</td>
<td>Tracking: 0.5 ppm/°C</td>
</tr>
<tr>
<td>PRND HT</td>
<td>Custom hermetically sealed precision resistor network devices (PRND) for high temperature applications up to +230°C</td>
<td>5 to 125 KΩ (per chip)</td>
<td>Absolute: ±0.01%</td>
<td>Absolute: ±2.5 ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ratio match: 0.005%</td>
<td>Tracking: 2.5 ppm/°C</td>
</tr>
</tbody>
</table>

Networks built to customer requirements. Send schematics and electrical specification to Application Engineering Dept. at foil@vpgsensors.com.

* Tighter performances and higher or lower value resistances are available for all models.
Avionics, Military, and Space (AMS)

Avionics, military, and space (AMS) applications have reliability requirements that exceed the standard processes of electronic component manufacturing. Military-style (MIL) testing consists of electrical and environmental stresses that may be applied to each resistor, or to a sample of parts from each production lot. By reviewing the behavior of the parts when they are subjected to the specified tests, the performance of a lot is guaranteed to a higher level of reliability and lot-to-lot uniformity. Different qualification inspection plans are applicable depending on the application, ranging from a DLA specification up to a MIL-qualified component with an established reliability level. Additionally, custom screening plans, such as those modeled after NASA EEE-INST-002 guidelines, or plans intended to qualify products for use in higher temperatures, may be considered. Contact our Application Engineering department for the appropriate qualification inspection for your project.

Standards in brief:

1. **Defense Logistics Agency (DLA)** — The DLA is known to more than 24,000 military and civilian customers, plus 10,000 contractors, as one of the largest suppliers of weapons systems spare parts. The DLA was formerly known as the Defense Supply Center Columbus (DSCC)

2. **EEE-INST-002** (Instruction for EEE parts selection, screening, qualification, and derating) — The purpose of this standard is to establish baseline criteria for selection, screening, qualification, and derating of EEE parts for use on NASA GSFC space flight projects. This standard shall provide a mechanism to assure that appropriate parts are used in the fabrication of space hardware that will meet mission reliability objectives within budget constraints

3. **EPPL (European Preferred Parts List)** — The EPPL is covered by ESCC 12300 (European Space Components Coordination), which provides the rules for establishing the list of preferred and suitable components to be used by European manufacturers of spacecraft hardware and associated equipment

4. **ESA (European Space Agency)** — The ESA has committed to developing a coherent, single set of user-friendly standards for all European space activities called the European Cooperation for Space Standardization. The ultimate goal of building such a standardization system at the European level is to minimize life-cycle cost, while continually improving the quality, functional integrity, and compatibility of all elements in a space project. This goal is achieved by applying common standards for project management and for the development and testing of hardware and software

5. **CECC (CENELEC Electronic Components Committee-European Committee for Electrotechnical Standardization)** — These manufacturer specifications are vital to designers who wish to use specific active and passive components that are approved to CECC QA schemes. The CECC Detail Specifications Service provides detailed information needed in electronics design, specification, maintenance, purchasing, and other functions that must locate and select electronic components

Our goal is to find solutions for challenging applications. For any questions, please contact foil@vpgsensors.com
Established Reliability (ER)

The RNC90Y established-reliability resistor has been the benchmark for high-precision, established-reliability discrete resistors since 1982. In 2000, the Z201 resistor achieved a technological breakthrough with a TCR of 0.2 ppm/°C, allowing the introduction of the RNC90Z, an established-reliability “R” level resistor with a TCR limit of ±2 ppm/°C over the extended range of −55°C to +175°C. This is a significant improvement over the existing RNC90Y’s ±5ppm/°C TCR specification.

VFR’s models 1445Q and 1446Q networks are qualified to MIL-PRF-83401, characteristic C, schematic A. Actual performance exceeds all the requirements of MIL-PRF-83401 characteristic C.

VFR’s RJ26 quarter-inch precision trimming potentiometer is qualified to MIL-PRF-22097.
Table: DLA, EEE-INST-002, EPPL, ESA and CECC Foil Products

<table>
<thead>
<tr>
<th>Type</th>
<th>Construction</th>
<th>DLA (1) and MIL Spec Number</th>
<th>EEE-INST-002 (2) and MIL Spec Number</th>
<th>EPPL (3)</th>
<th>ESA (4)</th>
<th>CECC (5)</th>
<th>Nominal TCR MIL Range (ppm/°C)</th>
<th>Typical Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRND</td>
<td>Custom hermetically sealed precision resistor network device</td>
<td>PRND EEE MIL-PRF-83401</td>
<td>2</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM0603</td>
<td>Wrap-around surface mount Z1 Foil Technology</td>
<td>303261 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM0805</td>
<td></td>
<td>303262 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM1206</td>
<td></td>
<td>303263 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM1506</td>
<td></td>
<td>303264 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM2010</td>
<td></td>
<td>303265 MIL-PRF-55342</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRSM2512</td>
<td></td>
<td>303266 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSMP0805</td>
<td>Wrap-around surface mount</td>
<td>07024 MIL-PRF-55342</td>
<td>07024 MIL-PRF-55342</td>
<td>303134 MIL-PRF-55342</td>
<td></td>
<td>0.005%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSMP1206</td>
<td></td>
<td>07025 MIL-PRF-55342</td>
<td>07025 MIL-PRF-55342</td>
<td>303135 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSMP1506</td>
<td></td>
<td>03010 MIL-PRF-55342</td>
<td>03010 MIL-PRF-55342</td>
<td>303136 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSMP2010</td>
<td></td>
<td>06001 MIL-PRF-55342</td>
<td>06001 MIL-PRF-55342</td>
<td>303137 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSMP2512</td>
<td></td>
<td>06002 MIL-PRF-55342</td>
<td>06002 MIL-PRF-55342</td>
<td>303138 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSM0805</td>
<td></td>
<td>07024 MIL-PRF-55342</td>
<td>07024 MIL-PRF-55342</td>
<td>303134 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSM1206</td>
<td></td>
<td>07025 MIL-PRF-55342</td>
<td>07025 MIL-PRF-55342</td>
<td>303135 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSM1506</td>
<td></td>
<td>03010 MIL-PRF-55342</td>
<td>03010 MIL-PRF-55342</td>
<td>303136 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSM2010</td>
<td></td>
<td>06001 MIL-PRF-55342</td>
<td>06001 MIL-PRF-55342</td>
<td>303137 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSM2512</td>
<td></td>
<td>06002 MIL-PRF-55342</td>
<td>06002 MIL-PRF-55342</td>
<td>303138 MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSM2018</td>
<td></td>
<td>93030 MIL-PRF-55342</td>
<td>93030 MIL-PRF-55342</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. DLA (Defense Logistics Agency, formerly known as DSCC)
2. EEE-INST-002 (Instruction for EEE Parts Selection, Screening, Qualification, and Derating)
3. EPPL (European Preferred Parts List)
4. ESA - European Space Agency
5. CENELEC Electronic Components Committee-European Committee for Electrotechnical Standardization

All the above resistors are also available on the shelf as standard products.

Revision: 01-Jun-2015 vishayfoilresistors.com
DLA, EEE-INST-002, EPPL, ESA and CECC Foil Products

<table>
<thead>
<tr>
<th>Type</th>
<th>Construction</th>
<th>DLA (1) and MIL Spec Number</th>
<th>EEE-INST-002 (2) and MIL Spec Number</th>
<th>EPPL (3)</th>
<th>ESA (4)</th>
<th>CECC (5)</th>
<th>Nominal TCR Mil Range (ppm/°C)</th>
<th>Typical Load Life Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR1DZ</td>
<td>Molded, flexible terminations with robust construction</td>
<td>06020 MIL-PRF-55182</td>
<td>303139 MIL-PRF-55182</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>SMR1D</td>
<td></td>
<td>06020 MIL-PRF-55182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SMR3DZ</td>
<td></td>
<td>06021 MIL-PRF-55182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>SMR3D</td>
<td></td>
<td>06021 MIL-PRF-55182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>VCS1625Z</td>
<td>Current sense with Kelvin connections for high accuracy</td>
<td>08003 MIL-PRF-55342</td>
<td>303119Z MIL-PRF-55342</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>VCS1625</td>
<td></td>
<td>00803 MIL-PRF-55342</td>
<td>303119 MIL-PRF-55342</td>
<td></td>
<td>✔️</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CSM2512</td>
<td></td>
<td>07011 MIL-PRF-49465</td>
<td>303144 MIL-PRF-49465</td>
<td></td>
<td></td>
<td></td>
<td>15 Max</td>
<td>0.05%</td>
</tr>
<tr>
<td>CSM3637</td>
<td></td>
<td>07012 MIL-PRF-49465</td>
<td>303145 MIL-PRF-49465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z201</td>
<td>Through-hole</td>
<td></td>
<td>303143 S-311-P813</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Z201L</td>
<td></td>
<td></td>
<td>303143L S-311-P813</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S102</td>
<td></td>
<td></td>
<td>89039 MIL-PRF-89039</td>
<td></td>
<td>✔️</td>
<td></td>
<td>2</td>
<td>0.005%</td>
</tr>
<tr>
<td>300144</td>
<td>Through-hole voltage divider</td>
<td>87026 MIL-PRF-55182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.005%</td>
</tr>
<tr>
<td>300144Z</td>
<td></td>
<td>87026 MIL-PRF-55182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>1240</td>
<td>Trimmer</td>
<td>87126 MIL-PRF-39035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Notes:
1. DLA (Defense Logistics Agency, formerly known as DSCC)
2. EEE-INST-002 (Instruction for EEE Parts Selection, Screening, Qualification, and Derating)
3. EPPL (European Preferred Parts List)
4. ESA - European Space Agency
5. CENELEC Electronic Components Committee-European Committee for Electrotechnical Standardization

All the above resistors are also available on the shelf as standard products.
Example of Test Flow

Models #303144 and 303145—fixed resistors CSM2512 and CSM3637 with screen/test flow in compliance with EEE-INST-002 (Tables 2A and 3A, Film/Foil, Level 1) MIL-PRF-55342 and MIL-PRF-49465.

Table 2. EEE-INST-002 (Table 2A Film/Foil, level 1) 100% Tests/Inspections (1)

<table>
<thead>
<tr>
<th>Test Category</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Shock</td>
<td>RC Record 25 x (- 65 °C to + 150 °C)</td>
</tr>
<tr>
<td>High Temperature Exposure</td>
<td>RC Record ΔR = 0.1 %</td>
</tr>
<tr>
<td>Final Inspection</td>
<td>5 % PDA on ΔR, 10 % PDA on out of tolerance</td>
</tr>
<tr>
<td>Visual Inspection</td>
<td>Magnification 30 x to 60 x</td>
</tr>
<tr>
<td>Mechanical Inspection</td>
<td>Dimensions, workmanship, 3 units sample size</td>
</tr>
</tbody>
</table>

Note
(1) VFR Resistors will perform a pre-cap visual inspection 100% in the production flow prior to overcoating.

Table 3. EEE-INST-002 (Table 3A Film/Foil, level 1) Destructive Tests – MIL-PRF-49465 (2)

<table>
<thead>
<tr>
<th>Group 2</th>
<th>Sample size: 3(0) Solderability MIL-STD-202, method 208</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCR measurement per MIL-STD-202, method 304</td>
</tr>
<tr>
<td></td>
<td>- 55 °C/+ 25 °C/+ 125 °C</td>
</tr>
<tr>
<td></td>
<td>303144: 3 mΩ to < 100 mΩ: ± 20 ppm/°C</td>
</tr>
<tr>
<td></td>
<td>100 mΩ to 200 mΩ: ± 25 ppm/°C</td>
</tr>
<tr>
<td></td>
<td>303145: 2 mΩ to ≤ 3 mΩ: ± 25 ppm/°C</td>
</tr>
<tr>
<td></td>
<td>> 3 mΩ to < 100 mΩ: ± 20 ppm/°C</td>
</tr>
<tr>
<td></td>
<td>100 mΩ to 200 mΩ: ± 25 ppm/°C</td>
</tr>
<tr>
<td>Low temperature storage per MIL-PRF-49465</td>
<td>ΔR = 0.2 %</td>
</tr>
<tr>
<td>- 55 °C ambient no load dwell for 2 h to 8 h at + 25 °C</td>
<td></td>
</tr>
<tr>
<td>Low temperature operation per MIL-PRF-55342</td>
<td>ΔR = 0.2 %</td>
</tr>
<tr>
<td>- 65 °C ambient no load dwell for 1 h</td>
<td></td>
</tr>
<tr>
<td>rated power for 45 min</td>
<td></td>
</tr>
<tr>
<td>no load dwell at + 25 °C for 24 h ± 4 h</td>
<td></td>
</tr>
<tr>
<td>Short time overload per MIL-STD-49465</td>
<td>ΔR = 0.3 %</td>
</tr>
<tr>
<td>5 x rated power at + 25 °C for 5 s, not to exceed maximum current rating</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 3</th>
<th>Sample size: 10(0) mounted on FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to soldering heat</td>
<td>ΔR = 0.05 %</td>
</tr>
<tr>
<td>10 s to 12 s at + 260 °C reflow method</td>
<td></td>
</tr>
<tr>
<td>Moisture resistance per MIL-STD-202, method 106 (7a and 7b not required)</td>
<td>ΔR = 0.05 %</td>
</tr>
<tr>
<td>240 h, no power</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 4</th>
<th>Sample size: 9(0) mounted on FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock per MIL-STD-202, method 213, condition I</td>
<td>ΔR = 0.05 %</td>
</tr>
<tr>
<td>100G, 6 ms axes Z and Y, 10 shocks per axis</td>
<td></td>
</tr>
<tr>
<td>Vibration per MIL-STD-202, method 204, condition D</td>
<td>ΔR = 0.05 %</td>
</tr>
<tr>
<td>10 Hz to 2000 Hz, 20G 2 axes, 6 h per axis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5</th>
<th>Sample size: 9(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life test per MIL-PRF-49465</td>
<td>ΔR = 1 %</td>
</tr>
<tr>
<td>2000 h, + 70 °C, rated power</td>
<td></td>
</tr>
</tbody>
</table>

Revision: 01-Jun-2015
Example of Load Life Results (10,000 h)

RNC90Y is a QPL product with established reliability (ER). It meets the requirements of MIL-PRF-55182/9.

Notes

1. Units selected randomly from lots which successfully passed the table 2A testing
2. Optional, per customer request.

Table 3. EEE-INST-002 (Table 3A Film/Foil, level 1) Destructive Tests — MIL-PRF-49465 (2)

<table>
<thead>
<tr>
<th>Group</th>
<th>Sample Size: 10(0) - mounted on FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solder mounting integrity</td>
</tr>
<tr>
<td></td>
<td>per MIL-PRF-55342</td>
</tr>
<tr>
<td></td>
<td>303144: 3 kg force, 30 s</td>
</tr>
<tr>
<td></td>
<td>303145: 5 kg force, 30 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 9</th>
<th>Sample size: 5(0) - mounted on FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High temperature exposure</td>
</tr>
<tr>
<td></td>
<td>per MIL-PRF-49465</td>
</tr>
<tr>
<td></td>
<td>ΔR = 0.3 %</td>
</tr>
<tr>
<td></td>
<td>1000 h, + 170 °C ± 7 °C, no power</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 10(3)</th>
<th>Sample size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For 303144: 12</td>
</tr>
<tr>
<td></td>
<td>For 303145: 4</td>
</tr>
<tr>
<td></td>
<td>Outgassing</td>
</tr>
<tr>
<td></td>
<td>Per ASTM E595</td>
</tr>
</tbody>
</table>

![Graph showing load life results](image)

RNC90Y - 50 kΩ

10,000 Hours at 125°C, 0.3W

240 Resistors Total

Date Codes 0606, 0736, 0828, 0910, 0937

![Graph showing frequency distribution](image)
Aerospace

The demands of the aerospace segment differ from the commercial segments in one major area — ongoing reliability. In some cases, there is only one chance to complete the mission, and the system cannot be brought back into the shop for repairs. Some systems must travel deep-space for 10 years or more before being activated. Every component must activate when required and perform flawlessly to the end of the mission. This is why VFR resistors, with their long-term consistency and reliability, are the only choice for aerospace applications.

End Product
Thruster control system for satellites

Function
Voltage control

Customer Requirements

- Propulsion system must be precise due to high sensitivity of forces in anti-gravity environments
- High reliability since there will be no servicing during its lifetime
- Established reliability in previous aerospace applications

The VFR Solution

RNC90Y and RNC90Z

QPL resistors with established reliability (ER) that meet the requirements of MIL-PRF-55182/9

- The most precise and reliable resistor available, used for decades in the aerospace industry:
 - Absolute TCR for RNC90Z: 2 ppm/°C maximum at –55°C to +125°C range
 - Absolute TCR for RNC90Y: 5 ppm/°C maximum at –55°C to +125°C range;
 - 10 ppm/°C maximum at 125°C to +175°C range
 - Absolute tolerance: 0.005% (50 ppm)
 - Load-life stability: ±0.005% for 2000 h, 0.3 W and +125°C
 - Failure rate: Level R (per MIL-PRF-55182-9 and MIL-STD-690)

303134, 303135, 303136, 303137, 303138

Screen/test flow in compliance with EEE-INST-002, (Tables 2A and 3A, Film/Foil, Level 1) and MIL-PRF-55342

- Ultra high-precision surface-mount chip resistors, VSMP Z Foil technology configuration:
 - Temperature coefficient of resistance (TCR): 0.2 ppm/°C typical (–55°C to +125°C, +25°C ref.)
 - Resistance tolerance: to ±0.02%
 - Power coefficient “ΔR due to self heating”: 5 ppm at rated power
 - Power rating: to 400 mW at +70°C
 - Load-life stability: ±0.03% at +70°C, 2000 h at rated power
 - Electrostatic discharge (ESD) at least to 25 kV
 - Short-time overload: 0.02%
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
 - Rise time: 1 ns, effectively no ringing
Audio – “Hear the Difference”

In audio systems, “high end” means faithful reproduction of the original signal and the absence of noise insertion by the electronic components — particularly the resistors. The audio discrimination level is sometimes beyond the instrument measuring capability, but nonetheless aurally detectable. VFR resistors offer the lowest noise available, and are essential components of any high-end audio system.

End Product
High-end audio preamplifier

Function
Line-level audio signal amplification

Customer Requirements
- Low-noise preamplifier for implementation into differential amplifier circuit
- Tight settablity required to maintain accurate amplifier gain
- Trimmer technology, which provides consistent and reliable performance

The VFR Solution

1240 Trimmer
Ultra-high-precision trimming potentiometer designed to meet or exceed the requirements of MIL-PRF-39035, Char. H, with a smooth and unidirectional output
- Current noise: 0.010 μVRMS/V of applied voltage (<-40 dB)
- Results in a high signal-to-noise ratio and a high common mode rejection ratio
- Settablity: 0.05% typical; 0.1% maximum
- Setting stability: 0.1% typical; 0.5% maximum
- Trimmer design, which ensures a smooth and unidirectional output:
 - Wirewound technology exhibits a step function in response to wiper travel, while cermet technology has wide deviations in response to wiper travel
 - Only Bulk Metal Foil offers a linear and predictable response
- Immune to shock vibrations

VAR Audio Resistor
Built on Bulk Metal Z Foil technology, with improved sound quality, the VAR provides a combination of low noise and low inductance/capacitance, making it unrivalled for applications requiring low noise and distortion-free properties.
- “Naked Z Foil resistor” design without mold or encapsulation for reduced signal distortion:
 - Temperature coefficient of resistance (TCR): ± 0.2 ppm/°C typical at –55°C to +125°C, 25°C ref.
 - Power rating: to 0.4 W at +70°C
 - Resistance tolerance: to ±0.005%
 - Load-life stability: to ±0.005% at +70°C, 2000 h at rated power
 - Non-inductive, non-capacitive design
 - Rise time: 1 ns without ringing
 - Current noise: 0.010 μVRMS/V of applied voltage (<-40 dB)
 - Thermal EMF: 0.05 μV/°C
 - Voltage coefficient: <0.1 ppm/V
 - Inductance: <0.08 μH
- Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
- Electrostatic discharge (ESD) at least to 25 kV

For other recommendations for audio applications, please refer to the following resistors: VSH, S102C, Z201, Z203.
VFR Resistors in Action

Automatic Test Equipment (ATE)

Automatic test equipment (ATE) performs at high speeds, reading and recording information from thousands of devices/boards that would otherwise need to be probed by hand. Any introduction of spurious signals from the ATE machine or its components could result in failure to reject a faulty device, or conversely, cause spurious rejection of perfectly good product. If ever there was a place not to be “penny wise and pound foolish” it is in the resistor complement of an ATE. The wisest resistor choice for ATEs is a VFR resistor.

End Product
DC test instrument

Function
Digitize an AC signal

Customer Requirements

- Short-term stability
- Low sensitivity to temperature (external and internal)
- Precision required due to resource constraints
- Requires resistor of minimal size due to real estate constraints

The VFR Solution

VFCP2010 (Flip Chip with Z Foil)
Ultra-high-precision Z Foil flip chip resistor with 35% space savings vs. a wraparound design

- The most stable and precise resistor available:
 - Load-life stability: ±0.005% for 2000 h at rated power and +70°C
 - Absolute TCR: 0.2 ppm/°C typical at -55°C to +125°C range, +25°C ref.
 - Absolute tolerance: 0.01%
 - Flip chip design saves 35% more space than a wraparound design
 - Electrostatic discharge (ESD) at least to 25 kV
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
 - Rise time: 1 ns, effectively no ringing

SMR1DZ/SMR3DZ (Z Foil)
Unique flexible terminations ensure minimal stress transference from the PCB due to a difference in temperature coefficient of expansions (TCE)

- Ultra-high-precision Z Foil molded surface-mount resistor:
 - Temperature coefficient of resistance (TCR): ±0.05 ppm/°C typical (0°C to +60°C)
 ±0.2 ppm/°C typical (-55°C to +125°C, +25°C ref.)
 - Resistance tolerance: to ±0.01%
 - Power coefficient of resistance (PCR), “ΔR due to self heating”: 5 ppm at rated power
 - Load-life stability: ±0.005% (+70°C for 2,000 h at rated power)
 - Power rating: to 600 mW at +70°C
 - Matched sets with TCR tracking are available upon request
 - Electrostatic discharge (ESD) at least to 25 kV
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
 - Rise time: 1 ns, effectively no ringing
Aviation

The electronics used in commercial avionics are exposed to dramatic temperature excursions, shock and vibration, moisture, and the test of time. In engine, cabin, and flight control applications, resistors need to maintain their values despite all of these factors. VFR resistors have a long history of applications in commercial aviation, supported by more than 30 years of load-life testing.

End Product

Aircraft engine

Function

High-temperature measurement control

Customer Requirements

- Precise voltage reference capable of measuring down to nano-volts
- Implementation into a microbridge configuration
- Must perform properly at a temperature of +80°C and power of 0.1 W

The VFR Solution

300144Z

Ultra-high-precision Z Foil voltage divider resistors
- Precise voltage divider with flexibility of use and accurate performance at high temperatures:
 - Absolute tolerance: 0.005%
 - Ratio tolerance: 0.005%
 - Absolute TCR: 0.2 ppm/°C typical at –55°C to +125°C, +25°C ref.
 - Power rating: to 0.2 W at +70°C
 - PCR: 5 ppm at rated power

303144, 303145

Screen/test flow in compliance with EEE-INST-002 (Tables 2A and 3A, Film/Foil, Level 1), MIL-PRF-55342, and MIL-PRF-49465
- Fixed resistors CSM2512 and CSM3637 for low-value current-sense resistors, providing power and precision in a four-terminal, surface-mount configuration:
 - Temperature coefficient: ±20 ppm/°C max. (–55°C to +125°C, +25°C ref.)
 - Resistance tolerance: ±0.5%
 - Four-terminal (Kelvin) design: allows for precision accurate measurements
 - Power rating: 1 W to 3 W
 - Short-time overload: ±0.1% typical
 - Thermal EMF: 3 μV/°C
 - Maximum current: up to 38 A

Check also: VFD244Z, VSH144, DSMZ, SMNZ
Cryogenics

Cryogenic applications require structural integrity capable of withstanding extreme thermal cycling without damage and without detriment to performance. VFR resistors have been used as heaters of small-mass samples and as circuit elements at cryogenic temperatures.

End Product

Liquefied natural gas transport system

Function

Temperature regulator

Customer Requirements

- Reliable performance in extremely low temperatures
- Flexibility in resistor configuration
- Use in high-humidity and high-pressure environments

The VFR Solution

Custom-Designed Hermetically Sealed Networks

- Custom networks designed to the customer’s requirements; normal values are:
 - Absolute tolerance: 0.005%
 - Tolerance match: 0.002%
 - Absolute TCR: 2 ppm/°C typical at –55°C to +125°C, +25°C ref.
 - TCR tracking: <0.5 ppm/°C
 - Hermeticity of 10-7 atmospheric cc/s: the hermetic package provides a seal around the resistive element, which protects it from the natural damage caused by moisture over time
 - Also available as DIP version

VSMP Series (0603, 0805, 1206, 1506, 2010, 2512) (Z Foil)

The VSMP Series is the industry’s first device to provide high rated power, excellent load-life stability, and extremely low TCR all in one resistor

- Ultra-high-precision foil wraparound surface-mount chip resistor:
 - Temperature coefficient of resistance (TCR): 0.05 ppm/°C typical (0°C to +60°C)
 - 0.2 ppm/°C typical (–55°C to +125°C, +25°C ref.)
 - Resistance tolerance: to ±0.01%
 - Power coefficient of resistance (PCR), "ΔR due to self heating": 5 ppm at rated power
 - Power rating: to 750 mW at +70°C
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
 - Load-life stability: to ±0.005% at +70°C for 2000 h at rated power
 - Electrostatic discharge (ESD) at least to 25 kV
 - Short-time overload: ≤0.005%
 - Matched sets are available on request
Down-Hole

The high temperature of down-hole applications is a huge challenge for electronic components and most resistor technologies. Temperatures upwards of +275°C are not uncommon and are even above the melting point of some solders. Thin film resistors are oxidized into oblivion by these temperatures and wirewound devices see major value shifts. Even VFR resistors cannot be exposed indefinitely to these temperatures, but the encapsulation of the foil element stands up to these environmental stresses long enough to enable down-hole measurements through dozens of deep travel cycles. The 100 times thicker resistive layer inherent in the foil resistor provides it with long-term stability in cold and hot environments and helps establish it as the preferred resistor for seismic oil exploration, as well as for down-hole applications.

End Product
Processor for motor control

Function
High-precision voltage reference

Customer Requirements
- Low noise and high common mode rejection ratio
- Long-term stability and minimal drift
- Will be used in high-humidity and high-pressure environments

The VFR Solution

VHD200
Oil-filled, hermetically sealed voltage dividers in a small package (oil-filled as standard, air-filled available upon request)
- The most precise and reliable resistor available, used for decades in the aerospace industry:
 - Absolute TCR: 2 ppm/°C typical at –55°C to +125°C, +25°C ref.
 - Foil technology, which exhibits low noise <-40 dB
 - Ratio stability: <=0.001% for 2,000 h at rated power and +70°C
 - Absolute tolerance: 0.005%
 - Tolerance match: 0.001%
 - TCR tracking: 0.1 ppm/°C
 - Hermeticity of 10^-7 atmospheric cc/s: the hermetic package provides a seal around the resistive element, which protects it from the natural damage caused by moisture over time. In addition, the VHD200 is oil-filled, which further protects the device from degradation and ensures long-term performance in any extreme environment
 - Shelf-life stability: 2 ppm for at least six years
 - Post-manufacture operations (PMO) are available for enhanced performance

V5X5Z, V15X5Z (Z Foil)
The V5X5Z and V15X5Z (Z Foil) offer an order of magnitude improvement over other chip resistors in hybrid circuits, and are also available for high-temperature applications
- Ultra-high-precision Bulk Metal Z Foil chip resistors:
 - Temperature coefficient of resistance (TCR):
 - 0.05 ppm/°C typical (0°C to +60°C)
 - 0.2 ppm/°C typical (-55°C to +125°C, +25°C ref.)
 - TCR tracking: to 0.5 ppm/°C
 - Resistance tolerance:
 - Absolute to ±0.01% (user trimmable to ±0.005%)
 - Match to 0.01%
 - Power rating: 50 mW to 100 mW at +70°C
 - Load-life stability: ±0.01% at +70°C for 10,000 h at rated power
 - Short-time overload: ±0.02%
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
 - Pattern design minimizing hot spots

Vishay Foil Resistors in Action
Electron Beam

Electron beam machining is enabling a whole new range of applications, but its successful use depends on accuracy, speed, and repeatability. The resistors that drive the beam’s X and Y coordinates, and which control the beam’s intensity, must not add signals of their own due to temperature power fluctuations when operated as current sensor or other system fluctuations. They must also respond immediately to high-power pulse signals that drive the X/Y deflections. VFR resistors are the preferred resistive device for these applications.

End Product
Electron beam microscope

Function
Focusing mechanism

Customer Requirements
- High power rating and working voltage capacity
- Resistance of approximately 1 MΩ required
- Extreme precision and reliability

The VFR Solution

VHA518-11Z
Oil-filled, hermetically sealed ultra-precision resistors: 11 resistor chips in series (Z Foil)
- A robust design for the most accurate performance:
 - Power rating: 1.2 W to 2.5 W at +25°C
 - Maximum voltage capacity: 600 V
 - Resistance range: 5 Ω to 1.1 MΩ
 - Absolute tolerance: 0.001%
 - Absolute TCR: 0.2 ppm/°C typical at -55°C to +125°C, +25°C ref.
 - Load-life stability: ±0.002% for 2,000 h at rated power and +25 °C
 - Hermeticity of 10⁻⁷ atmospheric cc/s: the hermetic package provides a seal around the resistive element, which protects it from the natural damage caused by moisture over time. In addition, the VHA518 is oil-filled, which further protects the device from degradation and ensures long-term performance in any extreme environment

VHP100
Ultra-high-precision, hermetically sealed Bulk Metal Foil resistor with zero TCR; no humidity within a unique construction; minimizes the effects of stress factors; offers a total error budget of 2 ppm drift
- Oil-filled, hermetically sealed resistor:
 - Essentially zero TCR
 - Absolute resistance change (window):
 - VHP100 <60 ppm (–55°C to +125°C)
 - VHP101 <10 ppm (+15°C to +45°C)
 - Resistance tolerance: to ±0.005% (50 ppm), available to ±0.001% (10 ppm)
 - No humidity effect: hermetically sealed against moisture
 - Load-life stability: ±0.002% for 2,000 h at +25 °C and rated power
 - Shelf-life stability: ±2 ppm typical after at least six years
 - Current noise: 0.010 μVRMS/V of applied voltage (≤–40 dB)
 - Thermal EMF: 0.05 μV/°C typical
 - Oil-filled as standard, air-filled available upon request

Vishay Foil Resistors’ New-Generation, Ultra-Precision VHP100 Bulk Metal® Foil Resistor Wins Product of the Year Award from Electronic Products Magazine
Industrial

Industrial systems sometimes favor price over quality when it comes to electronic components, but when all factors are taken into consideration, quality resistors turn out to be the least expensive solution. In the long run, a reliable and stable resistor costs less than one that must be replaced or that requires additional circuitry to compensate for lack of precision. Factor in warranty repair expense, downtime in the hands of the customer, and transportation costs for repairs, and the “savings” from using second-rate resistors quickly disappear. Even when an assumed or measured returns rate is applied, the VFR resistor turns out to be the most economical solution.

End Product

High-voltage electrical circuit breaker

Function

Precision measurement control

Customer Requirements

- Network with specific configuration
- Precise measurements are necessary to ensure the safety of the circuit and the proper trigger for the circuit breaker
- Performance should be reliable within the temperature range of –40ºC to 70ºC
- Must endure both sporadic and continuous short-time overload

The VFR Solution

300193Z

Ultra-high-precision Z Foil voltage divider and network resistor; three resistor chips, two configured as a voltage divider and the other as an individual resistor

- Precise voltage divider offering flexibility and accurate performance at high temperatures:
 - Ratio tolerance: 0.005%
 - Absolute tolerance: 0.005%
 - TCR tracking: 0.5 ppm/ºC
 - Absolute TCR: 2 ppm/ºC typical at -55ºC to 125ºC range, +25ºC ref.
 - Short-time overload: 0.002%
 - Thermal stabilization time < 1 s (nominal value achieved within 10 ppm of steady-state value)

DSMZ (Z Foil)

The DSMZ surface-mount voltage divider provides a matched pair of Bulk Metal Z Foil resistors in a small epoxy molded package. The electrical specifications of this integrated construction offer improved performance and better real estate utilization over discrete resistors and matched pairs

- Ultra-high-precision Bulk Metal Z Foil surface-mount voltage divider:
 - Temperature coefficient of resistance (TCR):
 ±0.05 ppm/ºC typ. (0ºC to +60ºC)
 ±0.2 ppm/ºC typ. (-55ºC to +125ºC, +25ºC ref.)
 - TCR tracking: 0.1 ppm/ºC typical
 - Resistance tolerance:
 Absolute ±0.02%
 Match 0.01%
 - Power rating at 70ºC:
 Entire package 0.1 W
 Each resistor 0.05 W
 - Ratio stability: 0.005% (0.05 W at +70ºC for 2000 h)
 - Short-time overload: 0.005%
 - Non-inductive, non-capacitive design
 - Rise time: 1 ns, effectively no ringing
Laboratory and Metrology

In lab and metrology applications, the only appropriate resistors are those that will retain their initial value over time. Hermetic packaging is a must since every laboratory will have some humidity fluctuations. Additional essentials include stability under temperature fluctuations, no thermally active junctions, and a low temperature coefficient of resistance. Only one resistor combines all of these characteristics: Bulk Metal Foil resistors.

End Product
Real-time hydrogen-specific process monitor

Function
Hydrogen gas measurement

Customer Requirements
- Reliable performance for real-time accuracy
- High-speed response capabilities to detect instantaneous changes in environment
- Low TCR and low PCR specifications

The VFR Solution

VSMP0603 (Z Foil)
Ultra-high-precision foil wraparound surface-mount chip resistor (Z Foil)
- Reliable, high-speed performance for real-time measurements:
 - Load-life stability: ±0.005% for 2000 h at rated power and +70°C
 - Absolute TCR: 0.2 ppm/°C typical at –55°C to +125°C range
 - Power coefficient of resistance (PCR), “ΔR due to self heating”: 5 ppm at rated power
 - Absolute tolerance: 0.01%
 - Rise time: 1 ns, effectively no ringing
 - Electrostatic discharge (ESD) at least to 25 kV
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady state value)
 - Voltage coefficient: <0.1 ppm/V
 - Non-inductive: <0.08 μH

VHP203 (Z Foil)
The oil acts as a thermal conductor to eliminate the long-term degradation of unsealed resistor elements, while at the same time allowing the device to accept short periods of overload without degradation.
- Hermetically sealed miniature ultra-high-precision Z Foil technology resistors:
 - Temperature coefficient of resistance (TCR): ±0.05 ppm/°C (0°C to +60°C)
 - Resistance tolerance: to ±0.001% (10 ppm)
 - Load-life stability: ±0.002% maximum ΔR (+60°C for 2000 h at 0.1 W per chip)
 - Electrostatic discharge (ESD) up to 25 kV
 - Power rating: to 0.3 W at +25°C
 - Shelf-life stability: 2 ppm for at least six years
 - Current noise: 0.010 μVRMS/V of applied voltage (<–40 dB)
 - Thermal EMF: 0.05 μV/°C typical
 - Voltage coefficient: <0.1 ppm/V
 - Non inductive: <0.08 μH

Revision: 01-Jun-2015
vishayfoilresistors.com
Medical

Accurate and stable instrumentation in the medical field requires the ability to detect very small signals without producing false readings. For the complement of resistors surrounding the operational amplifier and anywhere else resistors are needed in medical applications, VFR resistors are the preferred choice.

End Product
Fluid injector device

Function
Current sensing for motor control

Customer Requirements
- Reliable measurements of motor control are necessary to perform injections at the precise location
- High-speed response necessary to perform given task
- Low sensitivity to short-time overload
- Surface-mount to preserve limited real estate
- Four-pad Kelvin connection desired as a way to improve accuracy

The VFR Solution

VCS1625ZP (Z Foil)
Ultra high-precision Z Foil surface-mount current-sensing chip resistor
- High-performance current sensing:
 - Load-life stability: 0.02% at 70°C, 2000h at rated power
 - Absolute tolerance: 0.2%
 - Absolute TCR: 0.05 ppm/°C typical at 0°C to +60°C range
 - Power coefficient of resistance (PCR), “ΔR due to self heating”: 5 ppm at rated power
 - Rise time: 1 ns, effectively no ringing
 - Short time overload: <0.005%
 - Standard Kelvin connection configuration

VCS331Z, VCS332Z (Z Foil)
High-precision four-terminal power current-sensing resistors. When mounted on a heatsink, the devices can sustain 10 W continuously without an appreciable change in resistance
- Four-terminal power current-sensing resistors:
 - Low temperature coefficient of resistance: 0.05 ppm/°C typical (0°C to +60°C)
 - Resistance tolerance: ±0.01%
 - Rapid ΔR stabilization under transient loads
 - Tenfold improvement of power coefficient of resistance [PCR]: 4 ppm/W
 - Thermal resistance: 6°C/W
 - Rise time: 1 ns, effectively no ringing
 - Power rating:
 - To 10 W on heatsink at +25°C
 - 3 W in free air at +25°C
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
 - Load-life stability:
 - ±0.005% (50 ppm), 3 W on heatsink at +25°C for 2,000 h
 - ±0.01% (100 ppm), 3 W in free air at +25°C for 2,000 h
Military

VFR resistors have been used for more than 40 years in military equipment, even before a suitable MIL specification was established. In the late 60s, MIL-PRF-55182 was established and the RNC90 style was applied to the VFR resistors. Testing to the "R" failure rate was conducted and the devices have been used continuously ever since. Today, VFR resistors are serving in every category of military equipment that relies on electronics for its functionality.

End Product
High-power pulse radio frequency transmitter

Function
Signal generator and feedback

Customer Requirements
- Real-time measurement capabilities
- Accurate digital-to-analog conversion capabilities
- High-speed response necessary to perform given task
- Able to withstand electrostatic discharges (ESD)
- High stability
- End-of-life tolerance: <0.1%

The VFR Solution

Z201 (Z Foil)
High-precision foil resistor
- The most reliable resistor for tasks that have no margin for error:
 - Temperature coefficient of resistance (TCR): ±0.2 ppm/°C typical (−55°C to +125°C, +25°C ref.)
 - Resistance tolerance: to ±0.005%
 - Load-life stability: to ±0.005% at 70°C for 2000 h at rated power
 - Electrostatic discharge (ESD) at least to 25 kV
 - Non-inductive, non-capacitive design
 - Rise time: 1 ns, without ringing
 - Current noise: 0.010 μVRMS/volt of applied voltage (<–40 dB)
 - Thermal EMF: 0.05 μV/°C

1445Q and 1446Q (QPL)
These networks are qualified to MIL-PRF-83401, characteristic C, schematic A, (Qualified Parts List - QPL). Actual performance exceeds all the requirements of MIL-PRF-83401, characteristic C
- QPL networks:
 - Hermetically sealed for maximum environmental protection – 100% leak protection
 - Gross leak: no bubbles
 - Fine leak: <5x10⁻⁷ cc/sec
 - Tested per MIL-PRF-83401
 - Ceramic package: 94% alumina (Al₂O₃)
 - Lid: gold-plated Kovar
 - Solder: tin/gold
 - Leads: alloy 42 [iron nickel] with 100 μ inches gold plating (MIL-STD-1276, type G-21-A)
 - Gold ball wire bonding
 - Foil chips V15X5
Precision Instrumentation

Whether they are used in the guidance system of a cruise missile, the autopilot of an airplane, or the remote responder of a weather station, VFR resistors are consistently the best choice for precision instrumentation because of their initial accuracy and long-term stability.

End Product
Chromatography data system validation instrument

Function
Unity gain inverting amplifiers and summing amplifiers

Customer Requirements

- TCR tracking and a tight tolerance ratio is essential for gain control
- Long-term stability and low drift are required for consistent performance
- Low-noise capabilities will not interfere with signal measurements

The VFR Solution

SMNZ (Z Foil)
Ultra-high-precision Z Foil surface-mount, four-resistor network dual-in-line package

- The most precise network package for amplifier applications:
 - Absolute TCR: 0.2 ppm/°C typical at –55°C to 125°C range
 - TCR tracking: 0.1 ppm/°C typical at –55°C to +125°C range
 - Tolerance matching: 0.01%
 - Ratio stability: 0.005% for 2,000 h at rated power and +70°C
 - Power coefficient of resistance (PCR), “ΔR due to self heating”: ±5 ppm at rated power
 - Current noise: 0.010 μVRMS/V of applied voltage (<–40 dB)
 - Electrostatic discharge (ESD) at least to 25 kV

VFD244Z (Z Foil)
Voltage divider with excellent initial resistance and ratio matching, tracking in operation, and fast response without ringing

- Bulk Metal Foil ultra-high-precision Z Foil voltage divider:
 - Temperature coefficient of resistance (TCR):
 - ±0.05 ppm/°C typical (0°C to +60°C)
 - ±0.2 ppm/°C typical (–55°C to +125°C, +25°C ref.)
 - TCR tracking: 0.1 ppm/°C typical
 - Resistance tolerance: absolute and matching to 0.005% (50 ppm)
 - Power coefficient of resistance (PCR), “ΔR due to self heating”: ±5 ppm at rated power
 - Power rating: up to 1 W at 70°C
 - Load-life ratio stability: <0.005% (50 ppm) at 1 W and +70°C for 2000 h
 - Maximum working voltage: 350 V
 - Rise time: 1 ns, effectively no ringing
 - Current noise: 0.010 μVRMS/V of applied voltage (<–40 dB)
 - Thermal stabilization time <1 s (nominal value achieved within 10 ppm of steady-state value)
Weighing Scales

Whatever they’re weighing, whether it’s gems or pharmaceuticals, scales must be accurate day in and day out. Some are in harsh environments while others are in laboratories. But regardless of the application, accuracy and consistency are the prime targets. For nearly 50 years, VFR resistors have been key components in weighing systems, and they continue to serve this important sector today.

End Product
Weighing scale

Function
Current cense and voltage reference

Customer Requirements
- High-precision measurement capabilities
- Accurate digital-to-analog conversion capabilities
- Low noise for best performance

The VFR Solution

CSM3637S
Bulk Metal Foil high-precision, current-sensing, power surface-mount metal strip resistor that meets the requirements of MIL-PRF-49465B
- The most precise and reliable resistor available:
 - Absolute tolerance: 0.2%
 - Absolute TCR: 20 ppm/°C maximum at -55°C to +125°C, +25°C ref.
 - Power rating: 2 W
 - Load-life stability: ±0.05% for 2,000 h at rated power and +70°C
 - Thermal EMF: <3 μV/°C

CSM2512S
Bulk Metal Foil high-precision, surface-mount resistor with four-terminal (Kelvin) design, which allows precise and accurate measurements with improved stability
- Current-sensing, power surface-mount metal strip resistor:
 - Temperature coefficient of resistance (TCR): ±15 ppm/°C maximum (-55°C to +125°C, +25°C ref.)
 - Load-life stability to ±0.05% (70°C for 2,000 h at rated power)
 - Power rating: 1 W
 - Resistance tolerance: ±0.1%
 - Short-time overload: ±0.1% typical
 - Thermal EMF: <3 μV/°C
 - Maximum current: up to 10 A

Check also: CSM3637Z, CSM3637P, CSM3637, CSM2512
At VFR, we are dedicated to promoting successful relationships with all of our customers. One of the ways we help speed your time to market is by making prototype parts available quickly per request (via our field design engineers, see Contacts).

The prototype sample parts delivered by VFR's Fastlane Services are the same parts as produced in our standard production, ensuring they have all the features and benefits of foil technology:

- Temperature coefficient of resistance (TCR): ±0.2 ppm/°C (−55°C to +125°C, +25°C ref.)
- Resistance tolerance (absolute and match): to ±0.001%
- Load-life stability: ±0.005% typical after 2,000 h at 70°C and 0.3 W
- VFR resistors are not restricted to standard values; specific “as-required” values can be supplied at no extra cost or delivery (e.g. 1,00025 kΩ vs. 1 kΩ)
- Electrostatic discharge (ESD): at least to 25 kV
- Thermal EMF: 0.05 µV/°C
- Pattern design minimizing hot spots
- Matched sets with TCR tracking are available upon request
- Resistors for high-temperature applications (to +240°C)
24/7 Support Available – Contact foil@vpgsensors.com

United States and Canada

Precision Centers:
- Contact: foil@vpgsensors.com
- Digikey – Thief River Falls, MN
 Josh Knott
 tel: +1 (484) 321-5315
- Wilbrecht Ledco – Saint Paul, MN
 Greg Engst
- UHP Resistors – Rancho Cucamonga, CA
 Haim Shmutz
- Texas Components – Houston, TX
 Nelson Bustas

Customer Service:
- Angela Coley – Malvern, PA
 email: angela.coley@vpgsensors.com
 tel: +1 (484) 321-5313
 mobile: +1 (215) 208-2521
- Lorraine Martinez – Malvern, PA
 email: lorraine.martinez@vpgsensors.com
 tel: +1 (484) 321-5314
- Scott Ryan – Malvern, PA
 email: scott.ryan@vpgsensors.com
 tel: +1 (484) 321-5312

Send new orders securely to foilnaorders@vpgsensors.com or Fax 610-884-7883

Application Engineering:
- Ron Coleman – Wendell, NC
 email: ron.coleman@vpgsensors.com
 tel: +1 (919) 374-5774
 mobile: +1 (919) 632-1795
- Steve Phillips – Wendell, NC
 email: steve.phillips@vpgsensors.com
 tel: +1 (919) 374-5781
 mobile: +1 (610) 324-7060
- Richard Zuratt – Malvern, PA
 email: richard.zuratt@vpgsensors.com
 tel: +1 (610) 251-5281
 mobile: +1 (610) 306-8442

Regional Sales Manager:
- Frederick W. May Jr. – Malvern, PA
 email: fred.may@vpgsensors.com
 tel: +1 (484) 321-5333
 mobile: +1 (484) 888-0839
24/7 Support Available – Contact foil@vpgsensors.com

Europe

Field Design Engineer (FDE) Territory Key:

<table>
<thead>
<tr>
<th>Field Design Engineer (FDE)</th>
<th>Territory Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin Smith</td>
<td>Europe</td>
</tr>
<tr>
<td>email: kevin.smith@vpgsensors.com</td>
<td></td>
</tr>
<tr>
<td>tel: +44 (0) 1344 827070</td>
<td></td>
</tr>
<tr>
<td>mobile: +44 7881 336060</td>
<td></td>
</tr>
<tr>
<td>Frank Weise</td>
<td>Europe</td>
</tr>
<tr>
<td>email: frank.weise@vpgsensors.com</td>
<td></td>
</tr>
<tr>
<td>tel: +49 33 20520408</td>
<td></td>
</tr>
<tr>
<td>mobile: +49 160 94192188</td>
<td></td>
</tr>
<tr>
<td>Laurent Wallet</td>
<td>Europe</td>
</tr>
<tr>
<td>email: laurent.wallet@vpgsensors.com</td>
<td></td>
</tr>
<tr>
<td>tel: +33 299742582</td>
<td></td>
</tr>
<tr>
<td>mobile: +33 680115951</td>
<td></td>
</tr>
</tbody>
</table>

Precision Centers:
- Contact: foil@vpgsensors.com
- Powertron – Teltow, Germany
 - Klaus Baufeld
 - Thomas Piltz
- Bedek – Dinkelsbühl, Germany
- Charcroft – Llanwrtyd Wells, United Kingdom
 - Paul Newman

Customer Service:
- Daniela Wagner – Heilbronn, Germany
 - email: daniela.wagner@vpgsensors.com
 - tel: +49 7131 39099-192
- Kristina Bako – Heilbronn, Germany
 - email: kristina.bako@vpgsensors.com
 - tel: +49 7131 39099-193
- Adam McGeever – Heilbronn, Germany
 - email: adam.mcgeever@vpgsensors.com
 - tel: +49 7131 39099-194

Customer Service Teamleader:
- Andrea Förster – Heilbronn, Germany
 - email: andrea.foerster@vpgsensors.com
 - tel: +49 7131 39099-196

Regional Sales Manager:
- Thomas Koch – Heilbronn, Germany
 - email: thomas.koch@vpgsensors.com
 - tel: +49 7131 39099-195
 - mobile: +49 151 12105798

Application Engineering:
- Hero Faierstain
 - email: hero.faierstain@vpgsensors.com
 - tel: +972 3 557 0834
 - mobile: +972 54 3000063
- Victor Chertakovsky
 - email: viktor.chertakovsky@vpgsensors.com
 - tel: +972 3 557 0401
 - mobile: +972 54 3303006
- Kevin Smith
 - email: kevin.smith@vpgsensors.com
 - tel: +44 (0) 1344 827070
 - mobile: +44 7881 336060
- Frank Weise
 - email: frank.weise@vpgsensors.com
 - tel: +49 33 20520408
 - mobile: +49 160 94192188
- Laurent Wallet
 - email: laurent.wallet@vpgsensors.com
 - tel: +33 299742582
 - mobile: +33 680115951

VISHAY FOIL RESISTORS
HEADQUARTERS

VISHAY PRECISION
FOIL GmbH
Teltow, Germany

POWERTRON
Teltow, Germany

BEDEK
Dinkelsbühl, Germany

CHARCROFT
Llanwrtyd Wells, Wales

FR

BE

LU

NL

GB

IE

NO

SE

FI

DK

LU

BE

DE

AT

SK

PL

CZ

HR

BA

RO

BG

GR

AL

MD

UA

UA

BY

LT

LV

EE

BA

RU

TR

CH

SI

H

SK

RO

BE

NL

FR

IE

AD

PT

ES

IT

FR

FI

DK

LU

BE

DE

AT

SK

PL

CZ

HR

BA

RO

BG

GR

AL

MD

UA

BY

LT

LV

EE

BA

RU

TR

CH
Central and South America

Field Design Engineer (FDE) Territory Key:

- **Kip Reiner**
 - Email: kip.reiner@vpgsensors.com
 - Tel: +1 (949) 716-8013
 - Mobile: +1 (610) 457-8095

- **David Gazit**
 - Email: david.gazit@vpgsensors.com
 - Tel: +972-3-5570899

Para consultas en Español, favor de contactar a David Gazit.

24/7 Support Available – Contact foil@vpgsensors.com
Asia and Israel

Field Design Engineer (FDE) Territory Key:

Takashi Sannomiya
email: takashi.sannomiya@vpgsensors.com
tel: +81-3-5282-2673
mobile: +81 80 5409 8970

Victor Chertakovskiy
email: victor.chertakovskiy@vpgsensors.com
tel: +972 3 557 0401
mobile: +972 54 3303006

Precision Center:
Contact: sales-alpha@alpha-elec.co.jp
Alpha Electronics – Akita, Japan
Takashi Sannomiya
Intron Resistors – Wagle Industrial Area, Thane

Customer Service:
Mieko Kato – Tokyo, Japan
email: mieko.kato@vpgsensors.com
tel: +81-3-5282-2761

Heian Cho – Tokyo, Japan
email: heian.cho@vpgsensors.com
tel: +81-3-5282-2761

Sales & Marketing Manager:
Takashi Sannomiya – Tokyo, Japan
email: takashi.sannomiya@vpgsensors.com
tel: +81-3-5282-2673
mobile: +81 80 5409 8970

Application Engineering:
Luba Gonorovsky
email: luba.gonorovsky@vpgsensors.com
tel: +972 3 557 0401

Victor Chertakovskiy
email: victor.chertakovskiy@vpgsensors.com
tel: +972 3 557 0401
mobile: +972 54 3303006

Vishay Advanced Technologies
Holon, Israel

Vishay Precision Foil
Tokyo, Japan

Vishay Foil Resistors
Headquarters

Vishay Foil Resistors Asia

Intron Resistors
Wagle Industrial Area, Thane
VPG Brands

Foil Technology Products
Alpha Electronics | Micro-Measurements | Powertron | Vishay Foil Resistors

Force Sensors
VPG Transducers

Weighing and Control Systems
BLH Nobel | KELK | VPG Onboard Weighing

vpgsensors.com